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ABSTRACT
In previous work, we reported dramatic improvements in au-

tomatic speech recognition (ASR) and spoken language translation
(SLT) gained by applying information extracted from spoken hu-
man interpretations. These interpretations were artificially created
by collecting read sentences from a clean parallel text corpus. Real
human interpretations are significantly different. They suffer from
frequent synopses, omissions and self-corrections. Expressing these
differences in BLEU score by evaluating human interpretations with
carefully created human translations, we found that human interpre-
tations perform two to three times worse than state-of-the art SLT.
Facing these stark differences, we address the question if and how
ASR and SLT can profit from human interpretations. In the follow-
ing we describe initial experiments that apply knowledge derived
from real human interpretations for improving English and Spanish
ASR and SLT. Our experiments are conducted on a small European
Parliamentary Plenary Sessions development set.

Index Terms— spoken language translation, STE-ASR, tight
coupling

1. INTRODUCTION

As of today, European Parliamentary Plenary Sessions (EPPS)
are broadcast live in up to 22 languages. The respective original-
language texts, along with their provisional translations, are pub-
lished after several weeks. These provisional translations are subse-
quently replaced by their so-called final text editions. This tedious
and expensive process may be supported effectively by transcriptions
and translations that are automatically created from the broadcast
audio. In this work, we examine the possibility of improving au-
tomatic speech recognition (ASR) and spoken language translation
(SLT) applied to EPPS by extracting information from the available
human interpretations. We report promising results for initial exper-
iments conducted on a small English↔Spanish EPPS development
set.
In previous work [1], we showed dramatic improvements in ASR
and SLT when incorporating information from human interpreta-
tions. These interpretations were artificially created by collecting
sentences read from the bilingual Basic Travel Expression Corpus
(BTEC). In our current work we use for the first time real human
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Fig. 1. Planned overall system architecture.

interpretations, as they are provided during EPPS. These real human
interpretations suffer from frequent synopses, omissions and self-
corrections. Further, the assumption made in our previous work,
that every spoken source sentence comes with a perfectly aligned
spoken target sentence is no longer valid. This assumption enabled
us to directly tailor ASR individually for each sentence. This sen-
tence based tailoring was done mostly by rescoring ASR n-best lists
with translation model scores and by favoring words found in the
automatic translations through a manipulated ASR language model
(LM). The improved English and Spanish recognition hypotheses
were also used to adapt the involved machine translation (MT) sys-
tems towards the transcriptions of the respective target sentences.
With these adapted MT systems, it was possible to further improve
ASR performance. This lead to an overall iterative system of mutual
ASR and MT adaptation as depicted in the left hand side of Figure
1. We called this approach Speech Translation Enhanced Automatic
Speech Recognition (STE-ASR).

2. EXPERIMENTAL SETUP

2.1. Planned Overall System Architecture

The overall system architecture for our experiments is depicted in
Figure 1. This architecture allows for a mutual adaptation of all
involved SLT components. It is based on the system architecture
described in [1]. In step 1, we automatically transcribe the English
and Spanish speech. Step 2 consists of using the ASR hypotheses
to bias the En↔Sp MT systems and then to automatically translate
the ASR hypotheses using the biased MT systems. The information
gained from the translated ASR hypotheses is used in a third step to
bias the ASR systems and to produce new, improved transcriptions.
These steps can now be repeated until no further improvement in
performance is observed. In this work, we report initial experiments



conducted for step 1 to 3.

2.2. Data

Our experiments were conducted on one of the European Parliament
Plenary Sessions included in the official TC-STAR [2] 2005 devel-
opment set. The segmented English audio track of the session had
2236 utterances with 108 minutes of audio. The Spanish track con-
sisted of 1728 utterances with 98 minutes of audio. Speakers in both
audio tracks change between politicians and human interpreters. In
the case that a politician is speaking neither in English nor in Span-
ish, the speakers in both tracks are human interpreters.
SLT performance is measured in BLEU computed towards two case
sensitive translation references without punctuation. It is important
to notice that the SLT references are not identical to the transcription
references of the respective parallel speech.

2.3. ASR Baseline Systems

The employed ASR systems were developed with the help of the
Janus Recognition Toolkit (JRTk), featuring the IBIS single pass
decoder. They consist of sub-phonetically tied three-state Hidden
Markov Models (HMMs) without state skipping. Acoustic model
training involved incremental splitting of Gaussians followed by
the estimation of one global semi-tied covariance matrix after LDA
and several iterations of Viterbi training. The SRI Language Model
Toolkit was used for language model (LM) training.

The overall English ASR system consists of ASR sub-systems
taken from the ISL TC-STAR Spring 2006 ASR Evaluation systems
[3]. These ASR sub-systems are tied together in a decoding setup
as depicted on the right hand side of Figure 1. The setup features
a first decoding pass in which two speaker-independent ASR sys-
tems with different acoustic front-ends are applied. A traditional
Mel-frequency scaled Cepstral Coefficients (MFCC) front-end and a
Minimum Variance Distortion-less Response (MVDR) [4] front-end
is used. The second decoding pass features two ASR systems with
speaker-dependent acoustic models. Unsupervised speaker adapta-
tion is performed on the output of the first decoding pass. At the end
of both decoding passes, confusion network combination (CNC)[5]
is applied to combine the output of the individual ASR systems.
The acoustic models were trained on 80h of English EPPS. The
pronunciation dictionary consists of 47K lowercased pronunciation
entries. The 4-gram language model (LM) was trained on the 2006
available EPPS transcriptions and EPPS final text editions, the Hub4
Boradcast News data and the English part of the UN Parallel Text
Corpus v1.0. The LM perplexity on the development session is
80 and the (case-sensitive) WER is 13.1% (15.2%). Capitalized
recognition output, as it is used as input to our En→Sp MT system,
is created in a post-processing step with the help of a case-sensitive
4-gram LM trained on the EPPS corpus.

We developed the Spanish ASR system using the same tech-
niques as were used to develop the English ASR system. The overall
decoding setup is the same, i.e. it is identical to the setup shown
in Figure 1. The acoustic models were trained on 140h of Spanish
EPPS and Spanish Parliament (CORTES) data. The pronunciation
dictionary has 77.9K entries over a case-sensitive vocabulary of
63.3K. The case-sensitive 4-gram LM was trained on the Span-
ish EPPS final text editions, the CORTES texts and the EPPS +
CORTES transcriptions. The LM perplexity on the development

Sp→En Sp→En En Transcript(csWER 0%) (csWER 11.8%)
54.69 48.77 14.61

En→Sp En→Sp Sp Transcript(csWER 0%) (csWER 15.2%)
45.92 40.94 19.8

Table 1. BLEU scores of the baseline SLT and the transcription ref-
erences. The case-sensitive WER of the source is shown in brackets.

session is 71 and (case-sensitive) WER is 10.7% (11.8%).

2.4. MT Baseline Systems

The used En↔Sp MT systems are based on MT systems developed
in our laboratory for the TC-STAR Spring 2007 SLT Evaluation.
The systems were trained on the parallel EPPS corpus. Phrase tables
were estimated via the GIZA++ toolkit [6] and University of Edin-
burgh’s phrase model training scripts. The phrase tables consist of
phrase-to-phrase translations annotated with four TM scores. These
four scores are the forward and backward phrase translation proba-
bilities and the forward and backward lexical weights. Both systems
apply a 4-gram LM built with the SRI LM toolkit and a 6-gram suffix
array LM. The LMs were trained on the respective target side of the
EPPS corpus. The ISL beam search decoder [7] combines the TM
and LM scores together with scores from an internal word reorder-
ing model and simple word and phrase count models to find the best
translation. To optimize the system towards a maximal BLEU score,
we use minimum error rate (MER) training as described in [8]. For
each model weight, MER applies a multi-linear search on the devel-
opment set n-best list produced by the system. The estimated model
weights are used to produce new translation n-best lists and the pro-
cess is repeated until the translation quality converges.

3. CAN WE GAIN FROM HUMAN INTERPRETATIONS?

The following shows the Sp→En SLT references along with the En-
glish transcription reference for the beginning of the used EPPS:

Sp→ En ref. 1: ‘I would like to ask if there are any remarks on the
minutes from yesterday’s sitting that I trust are in your pos-
session no remarks all right we will then consider the minutes
to be approved’

Sp→ En ref. 2: ‘I would like to ask you whether you have any ob-
servation to make with respect to the records of the yesterday
session which I hope are in your hands no observation fine
then we shall consider those records approved’

En transcript: ‘ladies and gentlemen the sitting is open you have
received the minutes from yesterday’s meeting I wanted to
ask you whether you have any comments on the minutes of
yesterday’s meeting if not and there do not seem to be any
comments in that case the minutes can be deemed approved’

When comparing these references it becomes immediately ap-
parent that they differ significantly. Tables 1 compares the BLEU
scores of our baseline SLT systems to the BLEU scores of the En-
glish and Spanish ASR transcription references for the complete ses-
sion. While the transcriptions have to be considered valid (simul-
taneous) translations, their translation performance in BLEU mea-
sured towards the two SLT references is two to three times worse
than the performance of the SLT systems. This huge difference can



be explained by certain strategies applied by the human interpreter to
keep up with the source language speaker. These strategies include
frequent synopses and planned omissions. More frequently occur-
ring self-corrections in the interpreter’s speech as well as accidental
omissions may also play a major role.
Regarding this ‘poor’ translation performance it is questionable how
‘useful’ information extracted from human interpreter speech is in
the context of improving ASR and SLT performance.

4. IMPROVING SLT PERFORMANCE

In the framework of the planned overall system as it is described in
Figure 1, an improved SLT can be interpreted in two ways. With the
goal of having a best possible ASR performance in mind, it can be
argued that an improved SLT performance is gained whenever the
translation is improved in the sense of providing best possible infor-
mation for a further successful ASR adaptation. In this context, an
improved SLT performance should be reached by biasing the system
as strong as possible towards the transcript of the respective parallel
audio, without incorporating ASR errors into the MT systems. We
will refer to such a kind of improvement as a ‘relative’ SLT improve-
ment. Accordingly, we call an improvement of the SLT systems to-
wards the provided SLT references an ‘absolute’ SLT improvement.

4.1. Extracting ASR n-gram hints

We investigated two different strategies, as well as their combina-
tion, to incorporate information from the ASR hypotheses into the
MT systems. First, we extracted n-grams with n = 1, 2, 3 from the
ASR first-best hypotheses of the target audio snippet that starts/ends
6 seconds before/after the start/end time for each source language
utterance. We call these n-grams ASR n-gram hints. These hints are
loaded during run-time by our translation component before trans-
lating a given source utterance. Whenever an ASR n-gram hint is
observed during decoding, a discount is applied to the score (cost)
of the current translation hypothesis. In this way, we favor transla-
tions that contain ASR n-gram hints. All ASR n-grams of the same
order share the same discount value. The specific discount value is
estimated via MER optimization. MER optimization was performed
towards the two SLT references, using the transcription references
as well as the ASR first-best hypotheses as input. Due to alignment
problems and decoder constraints, we did not perform a MER opti-
mization towards the transcriptions of the parallel audio.

4.2. Extracting ASR phrases

The second approach we investigated extracts complete translation
phrases from the source and target language ASR hypotheses and
incorporates them, again dynamically for each source utterance, into
the baseline phrase tables of the MT systems. We extract ASR trans-
lation phrases by computing the alignment matrix between source
ASR first-best hypothesis and target ASR first-best hypothesis of
the 6 seconds padded target audio snippet. In a first iteration, this
alignment matrix consists only of word-to-word translation prob-
abilities extracted from the forward and backward IBM4 lexicons
of the MT systems. We then estimate for each source word a dis-
crete probability distribution for source-to-target word delays d, with
d ∈ [−6, .., 0, ..+6] seconds. The source-to-target word delay is de-
fined as the distance in seconds between the start time of the source
words and their respective target language translation in the paral-
lel audio. For estimating the discrete probability distribution, we
consider only words that are aligned with a high lexical translation

Translation Direction En→ Sp Sp→ En
csWER of source 0.0% 15.2% 0.0% 11.8%
Baseline 45.92 40.94 54.69 48.77
ASR n-grams 46.48 41.01 55.06 49.48
ASR phrases 46.30 41.05 54.71 48.76
ASR n-gram & phrases 46.52 40.91 54.99 49.58

Table 2. ‘Absolute’ SLT improvement measured in BLEU towards
the two official SLT references.

Translation Direction En→ Sp Sp→ En
csWER of source 0.0% 15.2% 0.0% 11.8%
Baseline 12.84 12.10 8.49 7.88
ASR n-grams 13.89 12.81 9.94 9.29
ASR phrases 13.07 12.86 8.50 7.80
ASR n-gram & phrases 14.34 14.85 9.85 9.85

Table 3. ‘Relative’ SLT improvement measured in BLEU towards
the transcription references of the parallel audio.

probability and that are found within a 60 second window around
the current source word. The alignment matrix is then re-estimated,
using an interpolation of lexical translation probabilities and the es-
timated delay alignment probability. In a next step, we introduce
binary alignment links. These binary alignment links are computed
with the help of a simple algorithm described in [9]. This algorithm
allows limited alignment link overlaps, i.e. links that either share the
same source or the same target word. In a final step, we cluster the
binary alignment links using a neighborhood of k source and target
words around each link. These clusters now constitute ASR trans-
lation phrases. One example for a phrase extracted in this manner,
with a neighborhood of k = 1, is: presupuesto aqui en el Parla-
mento # budget here in the Parliament. For each of these phrases,
we compute the forward and backward translation probability based
on the IBM4 lexicons. In order to be able to incorporate these new
phrases into the baseline phrase table, we extend the baseline phrase
entries with two additional TM probabilities that are set to 1 (zero
logarithmic cost). Accordingly, the additional ASR phrases have
probabilities of 1 at the positions of the four original TM probabil-
ities, followed by the two computed TM probabilities of the ASR
phrases. The optimal weights by which these different translation
model probabilities contribute to the translation score (cost) used by
the decoder are estimated via MER optimization.

4.3. Experimental Results

Table 2 shows the ‘absolute’ SLT translation performance in BLEU
score when incorporating ASR n-gram hints, ASR phrases and a
combination of both. While we see small but consistent improve-
ments for incorporating ASR n-gram hints, applying ASR phrases
only gives a noticeable improvement for En→Sp when using the
English transcription references as input. In regards to an addi-
tional improvement when adding ASR phrases on top of ASR n-
gram hints, we observe the most noticeable improvements in both
translation directions when translating the human transcription ref-
erences. The ASR phrases are extracted from the first-best ASR hy-
potheses, i.e. the phrases contain recognition errors found in these
hypotheses. Translating the transcription references prevents ASR
phrases with recognition errors on the source side (and therefore po-
tentially wrongly aligned phrases) from being selected, which ex-
plains the better performance for this case.
While the improvements in terms of an ‘absolute’ SLT performance
measured against the two SLT references are small, it is arguable



Cheating Filtering Agreement Filtering
Baseline MT Baseline MT Improved MT

1-gram 100 - 54 - 70 90 - 48 - 62 90 - 50 - 65
2-gram 100 - 23 - 37 88 - 19 - 31 88 - 24 - 37
3-gram 100 - 11 - 20 85 - 9 - 16 86 - 13 - 23

Table 4. Precision, Recall and F-Measure of the filtered MT n-gram
hints for English ASR improvement.

MFCC MVDR CNC
Baseline 13.7% 13.5% 13.1%
Cheating 12.4% 11.9% 11.6%
Agreement 13.5% 13.1% 12.8%

Table 5. English ASR improvements in lowercase WER.

if the translation performance in itself may have improved more
strongly in the sense of a valid translation that is closer to the par-
allel audio transcription. A first indication for such a ‘relative’ im-
provement can be found when computing the BLEU score of the MT
systems towards the human transcript of the parallel audio. Table 3
lists the according BLEU scores. Although we did not perform a
MER optimization towards these references, we see consistent gains
for applying a combination of ASR n-gram hints and ASR phrases.
However, in the context of this work, we achieve this ‘relative’ SLT
performance mostly having the goal of a further improvement of the
involved ASR systems in mind. For this reason, we will measure
the ‘relative’ SLT performance in terms of an absolute improvement
of ASR performance as well as in terms of F-measure regarding the
quality of the extracted MT n-gram hints used for ASR improve-
ment, as described in the next section.

5. IMPROVING ASR PERFORMANCE

To bias ASR, we apply MT n-gram hints with n = 1, 2, 3. MT n-
gram hints are n-grams found in the m-best translations (m = 500)
of the target ASR first-best hypothesis. The ASR hypothesis is com-
puted from the 6 seconds padded target audio snippet. In order to
apply these hints to ASR, we changed our decoder to be able to ma-
nipulate n-gram LM probabilities dynamically during run-time. Our
ASR decoder now loads 3 different ‘discount’ language models of
order 1, 2 and 3, in addition to the baseline ASR LM. Initially, these
discount LMs have a logarithmic probability (cost) of 0 for all n-
grams. Before decoding an utterance, we change the cost of the MT
n-grams for the current source utterance to their respective discount
value. During decoding time, we subtract the scores provided by
these discount LMs from the score of the baseline ASR LM. This
mechanism enables us to apply MT n-gram discounts during decod-
ing time to the score of the current (partial) ASR hypothesis. MT
n-gram hints of the same order share the same discount value, which
is estimated via a manual grid search.

5.1. Experimental Results

For a first evaluation of the usefulness of the MT n-gram hints for
ASR improvement, we performed a cheating experiment with the
English ASR system. In this experiment, we filtered the available
MT n-gram hints with the human source transcriptions, i.e. we kept
only those hints that actually occur in the reference transcription.
One way to measure the quality of the resulting MT n-gram hints
without having to compute WER is to compute the F-measure of
these hints. The row labeled ‘cheating’ in Table 4 lists the preci-
sion, recall and F-measure of the filtered Sp→En MT n-gram hints.

Since we filtered the hints with the transcription reference itself, we
have a precision of 100%. Applying these cheating hints during the
CNC step of the second pass of the English ASR reduces the case-
insensitive WER from 13.1% to 11.7%. Recreating the lattices used
as input to the CNC step, with the cheating hints applied during lat-
tice creation, leads to an additional drop of 0.1% in WER for the
final result after CNC. The column labeled ‘cheating’ in Table 5 lists
detailed results for the latter case.
Transferring the concept of filtering the MT n-gram hints to a realis-
tic experiment leads to a filtering based on ASR n-best hypotheses.
We label this concept ‘agreement’ filtering of the MT n-gram hints.
We only keep MT n-grams found in the MT 500-best and the ASR
250-best hypotheses. Tables 4 and 5 list the detailed results in F-
measure and WER for these agreement hints.

6. CONCLUSION

We examined the English and Spanish parallel audio streams pro-
vided during live broadcasts of European Parliamentary Plenary Ses-
sions for their usability in improving ASR and SLT applied to the
very same audio. Our initial experiments showed that it is possi-
ble to extract information from the parallel audio streams to benefit
such ASR and SLT systems. In particular, we were able to reduce the
English ASR WER by 0.3% absolute from 13.1% to 12.8%. SLT im-
proved by 0.8 BLEU points for Sp→En and by 0.1 BLEU points for
En→Sp. The baseline BLEU scores were 48.77 and 40.94, respec-
tively. When measuring SLT improvement using the human tran-
scription of the parallel audio as reference, the gains were 2.8 BLEU
points for En→Sp and 2 BLEU points for Sp→En. The baseline
BLEU scores were 12.10 and 7.88, respectively.
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