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ABSTRACT
This paper presents a semi-supervised learning (SSL) ap-
proach to find similarities of images using statistics of local
matches. SSL algorithms are well known for leveraging a
large amount of unlabeled data as well as a small amount
of labeled data to boost classification performance. Our ap-
proach proposes to formulate the problem of matching two
images as an SSL based classification problem of image pairs
with a minimal amount of labeled pairs. We apply a Gaus-
sian random field model to represent each image pair as
vertices in a weighted graph and the optimal configuration
of the field is obtained by harmonic energy minimization. A
symmetrical feature selection criterion is first introduced to
select robust matches of local keypoints between two images.
The Mallows distance is then adopted to combine multiple
cues from statistics of local matches. Our experiments con-
firm that our SSL based approach not only boost classifica-
tion performance but also improve robustness of the learned
category model using only simple local keypoint features.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis: Object recognition

General Terms
Algorithms

Keywords
Semi-Supervised Learning, Object Classification

1. INTRODUCTION
The rapid growth of digital images on the Internet has

created many new challenges for image index and retrieval
research. However, a vast amount of available image data
also brings opportunities for researchers to solve some well-
studied problems from new perspectives. This observation
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Figure 1: Two kinds of image matching: object
based matching (a) and scene based matching (b).
Our approach focuses on the first case but also
presents experiments on the second case.

motivates us to take advantage of a large amount of image
data (unlabeled) from public datasets or Internet to re-study
one of classical image retrieval problems, namely comparing
two images (or image regions) to determine if they contain
the same kind of dominant objects.

Similarity between two images can be interpreted in differ-
ent senses. For example, two images both describing kitchen
scene can be considered as similar or relevant even though
they capture two different kitchens. However, in this paper,
we adopt another definition of image similarity. Two images
(or image regions) are considered to be similar if and only
if the dominant objects in two images are the same (kind
of) objects. Fig.1 illustrates these two cases. If an image
contains multiple objects, we assume that a preprocessing
step can be applied to segment the image into regions that
contain only one dominant object within each region, and
then apply the proposed method. Image similarity is usu-
ally measured based on a certain criterion through an image
matching process. Our task is, in fact, an image matching
problem.

The image matching problem has been popular since the
beginning of image retrieval research and the corner stone
of many different practical applications [5, 21, 4]. While
research has been particularly focused on apply different
kinds of image features and knowledge to boost matching
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Figure 2: Semi-supervised learning (SSL) of the air-
plane and motorbike categories. Triangles (△) indi-
cate matched image pairs (positive), boxes (2) indi-
cate unmatched pairs (negative) and circles (◦) rep-
resent unlabeled image pairs that include one la-
beled image and one unlabeled image.

performance [24, 19], little attention has been paid on us-
ing a large amount of unlabeled images together with a small
amount of labeled data (matched and unmatched image
pairs) to learn a robust image matcher. On the other hand,
semi-supervised learning (SSL), which utilizes the availabil-
ity of a large amount of unlabeled data to enhance classi-
fication performance, has evolved to a full fledged research
body in the last decade [1]. Because the SSL requires less
human effort and can provide higher accuracy, it is of great
interest both in theory and practice and has been applied in
many areas [10, 18], e.g., semantic video retrieval [3].

This paper presents an SSL based approach to match im-
ages using statistics of local matches. Our approach pro-
poses formulating the problem of matching two images as
an SSL based classification problem of image pairs solved
by a Gaussian random field. Our approach is different from
the previous research in three aspects, the problem formula-
tion, the feature representation and the matching model, all
of which will be described in detail in next two sections. Here
is a brief summary of the related work. Zhou et al. proposed
to combine SSL and active learning to exploit unlabeled data
to improve the performance of content-based image retrieval
[28]. Kuck et al. attempted to interpret a class of data asso-
ciation tasks (e.g., object recognition and semantic concept
detection) as a constrained semi-supervised learning prob-
lem [10]. Tian et al. provided an analysis on the value of
unlabeled data by considering different distributions of the
labeled and unlabeled data and showing the migrating effect
for semi-supervised within the CBIR context [23]. Other
SSL based work in image and video retrieval include [17].
Hertz et al. also introduced a technique that uses binary
relations between images to learn constraints for image re-
trieval [8]. Grauman and Darrell applied a graph-based
technique for unsupervised category learning using corre-
spondence patterns over local features [7]. Lazebnik et al.
proposed a method for recognizing scene categories based

on approximate global geometric correspondence [11]. Our
work is close to [2, 9] where matching is formulated as prob-
abilistic relaxation. On the other hand, interest points have
been actively studied and applied to image and video re-
trieval applications [20, 27, 16, 22], which inspired our fea-
ture representation using only local keypoints in this task.

The reminder of the article is organized as follows. Sec-
tion 2 describes the semi-supervised image matching prob-
lem formulation. Section 3 lays out the steps to compute the
pairwise distance between two image pairs from only local
keypoints extracted from images. Section 4 introduces the
Gaussian random field framework and harmonic functions
which serve as the learning engine of our SSL method. Sec-
tion 5 show the experimental results and analysis. Finally,
we summarize our findings in Section 6.

2. PROBLEM FORMULATION
The goal of this research is to address the problem of

matching two images which contain similar dominant ob-
jects by exploiting the intrinsic similarity structure of the
data through combining both unlabeled and labeled image
pairs within an SSL framework. We call the new approach
semi-supervised image matching (SIM). Figure 2 depicts the
proposed semi-supervised learning concept using the air-
plane and motorbike categories. Triangles indicate matched
image pairs (△), squares indicate unmatched pairs (2) and
circles represent unlabeled image pairs (◦).

Formally, we formulate SIM as follows. Given an im-
age set, X = {x1, ..., xl, xl+1, ..., xn}, and a label set, C =
{1, ..., c}, the first l images have labels {y1, ..., yl} ∈ C and
the remaining images are unlabeled. We call L = {(x1, y1), ...,
(xl, yl)} the labeled image set and U = {xl+1, ..., xn} the
unlabeled image set. The goal is to predict labels on U .
From L we build labeled image pair set Lp in the follow-
ing ways. For xi, xj when yi = yj , create a pair of xi, xj

and label it as positive (+) since xi and xj belong to the
same class. Also for each xi randomly select K other images
where yj 6= yi, j = 1, ..., K, create K pairs from them and
label them as negative (-). Thus Lp set consists of positive
image pairs and negative ones. Denote pairs in Lp as Z

j
i .

Set K to be at most c − 1 (c is the number of classes in
L), the size of Lp is O(lc) . Similarly, from U and L to-
gether we create the unlabeled image pair set Up. For each
unlabeled image, xp, p = (l + 1), ..., n, randomly select one
image per class in L, xq, where yq = 1, ..., c (each of which
belongs to one class), and build c pairs. Denote these pairs
as Zq

p , q = 1, ..., c. Since xp is an unlabeled image, Zq
p is put

in Up as an unlabeled pair. Thus the size of Up is (n − l)c,
in total there are O(nc) image pairs in Lp and Up.

Based on Lp and Up we build a connected graph, G =
(V, E), with nodes V corresponding to nc data points and
the edges, E, are weighted by an nc×nc affinity matrix, W ,
computed using the Mallows distance. Essentially, we trans-
form image matching into a binary classification problem,
where the positive label (+) indicates two images are from
the same class while the negative label (-) means two images
do not belong to the same class. Once labels are predicted on
all unlabeled image pairs, the label of each unlabeled image
can be inferred based on pairwise relationship between this
unlabeled image and c labeled images. For example, if Zq

p is
labeled as positive (+), xp is labeled as the class of xq (note
xp is originally an unlabeled image from U and xq is a la-
beled image from L). Thus, multi-label learning is naturally

232



Figure 3: Asymmetric matchings obtained by
Lowe’s matching criterion [12]. Notice features se-
lected on one dog’s back in (a) are selected in (b).

handled by our framework. The computational complexity
of the new problem on Lp and Up (O(n2c2)) is higher than
the original SSL on L and U (O(n2)). But the advantage of
exploring the more computational complex problem is obvi-
ous - extracting informative features from a pair of images
instead of a single image.

3. LOCAL FEATURES TO IMAGE-PAIR
DISTANCES

In this section, we describe how SIM represents the fea-
ture to compare two image pairs. Detecting interesting local
features from different images has been shown to useful for
a diverse class of computer vision problems [12]. Give two
images xi and xj , we first extract Harris-affine and Hessian-
affine keypoints [14] and compute their SIFT features. Next
a symmetrical matching algorithm is applied to select sym-
metrical matches of local features between these two im-
ages. Once the local matches are available, our method com-
putes displacement and orientation statistics of local feature
matching lines. Finally, to measure the similarity distance
between two pairs, Z

j
i and Zq

p , SIM calculates the sum of
squared Mallows distances between two image pairs.

In next, we first describe the criterion to select symmetri-
cal matches of local features, and then, computation of dis-
placement and orientation statistics of matching lines, and
finally, the function to combine local matching patterns to
obtain pairwise distances among image pairs.

3.1 Symmetrical Match of Local Features
Accurately matching extracted local features is crucial to

ensure the quality of high-level applications such as object
detection and recognition. The key issue is to define a reli-
able matching criterion so that correct matched candidates
are not missed while mismatching caused by a background
clutter or a noisy environment. Many state-of-the-art de-
scriptor matching algorithms choose to use the criterion pro-

Figure 4: Computing horizontal and vertical angles
from local feature matchings of two images.

posed by Lowe [12], which is defined as a threshold on the
ratio of distance from the closest neighbor to that of the
second-closest neighbor. The criterion has been proved to
be reliable and robust in many applications [12]. However,
there is an asymmetric phenomenon which often happens
when we apply Lowe’s matching algorithm on two images
twice with different matching directions, one from x1 to x2,
and the other from x2 to x1. The images in Figure 3 shows
the matching results by Lowe’s method. As we can see, the
matched features from (a) and (b) are not identical for the
same two images. The reason actually roots from the defini-
tion of the matching ratio Lowe used. Assume a feature fi in
x1, we find its best match fj from x2. However, in the other
direction, for the feature fj in x2, fi is not guaranteed to
be fj ’s best match in x1 by Lowe’s matching criterion. This
observation motivates us to put a symmetrical constraint on
Lowe’s matching criterion, which means, only when both fi

and fj are the best match to each other from both match-
ing directions using Lowe’s method, the pairs will then be
selected and paired.

3.2 Statistics of Local Matchings
Once we have a set of good local feature matches be-

tween xi and xj , we compute the orientation patterns of
feature matches by putting xi and xj side by side hori-
zontally and vertically. We also compute the displacement
changes of matched descriptors on the horizontal and ver-
tical directions by normalizing the sizes of xi and xj to be
identical and putting xi on the top of xj . Thus we capture
the matching patterns of this pair Z

j
i with four histograms,

namely, two orientations and two displacements, denoted by
H = {H1

o , H2
o , H1

d , H2
d}. H1

o and H2
o are estimated by align-

ing xi and xj horizontally and vertically. Depending on the
alignment, a histogram (36 bins with a step 5 degree from
0 to π) is composed of the quantized angles formed by the
descriptor matching lines with respect to the horizontal or
vertical axis. The vertical angle, θv, is computed as,

θv = arccos(
x2 − x1

√

(x2 − x1)2 + (y2 + h − y1)2
), (1)

as shown in Figure 4. Similarly, the horizontal orientation
angle, θh, is computed as θh = arccos( y2−y1√

(x2+w−x1)2+(y2−y1)2
).

The horizontal displacement is defined as dh = x2 − x1.
The sign(dh) > 0 indicates the keypoint moves to the right
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from I1 to I2, otherwise to the left. The vertical displace-
ment is defined as dv = y2 − y1. H1

o is the histogram on
θv,H2

o is the histogram on θh, H1
d is on dh and H2

d is the
histogram on dv. Orientation statistics are shown useful to
the near-duplicate keyframe tracking problem [15].

3.3 Image-Pair Distances
Denote the image pair space as Θ. Given two image pairs,

Z
j
i and Zq

p from Θ, we combine the orientation and displace-
ment matching patterns to obtain multiple distributions to
characterize them (Figure 5). We use the Mallows distance
to compute the distance D(Zj

i , Zq
p) between two image pairs

Z
j
i and Zq

p [13]. Assume a random variable F ∈ Rb follows

the distribution λ1 and G ∈ Rb follows λ2. Let Φ(λ1, λ2)
be the set of joint distributions over F and G with marginal
distributions of F and G constrained to λ1 and λ2 respec-
tively. Especially, if ζ ∈ Φ(λ1, λ2), then ζ has sample space
Rb×Rb and its marginal probabilities ζF = λ1 and ζG = λ2.
The Mallows distance is defined as the minimum expected
distance between F and G optimized over all joint distribu-
tions ζ ∈ Φ(λ1, λ2) as follows,

D(λ1, λ2) , arg min
ζ∈Φ(λ1,λ2)

(E ‖ F − G ‖p)
1
p , (2)

where ‖ · ‖ denotes the Lp distance between two vectors.
In our work, we use the L2 distance. For the discrete dis-
tributions such as histograms, H = {H1

o , H2
o , H1

d , H2
d} which

we compute from above feature extraction steps, the opti-
mization involved in computing the Mallows distance can
be solved by linear programming. Let two discrete distri-
butions from H be λ1, λ2 and λ1, λ2 are within the same
channel out of four, for example, both are horizontal orien-
tation histograms.

λi = {(z1
i , q

1
i ), (z2

i , q
2
i ), ..., (zni

i , q
ni
i )}, i = 1, 2; (3)

where n1 = n2, z
j
i is the j-th element of zi and q

j
i is the

associated probability, and ni, i = 1, 2 is the vector dimen-
sion. Therefore, Eq.(9) leads to the following optimization
problem,

D
2(λ1, λ2) = arg min

wi,j

m1
∑

i=1

m2
∑

j=1

wi,j ‖ z
i
1 − z

j
2 ‖2

, (4)

subject to
∑m2

j=1 wi,j = qi
1, i = 1, ..., m1,

∑m1
i=1 wi,j = q

j
2, j =

1, ..., m2, and wi,j ≧ 0, i = 1, ..., m1, j = 1, ..., m2. The op-
timization problem indicates that the squared Mallows dis-
tance is a weighted sum of pairwise squared L2 distances
between any support vector of λ1 and any of λ2. With
an objective to minimize the aggregated distance, the op-
timization is performed over the matching weights between
support vectors in the two distributions. The weights wi,j

are constrained to be positive or zero and q
j
i determines the

amount of influence from z
j
i on the overall distribution dis-

tance.
Since data point Z

j
i is each characterized by four his-

tograms (normalized along each variable dimension), aka
discrete distributions, SIM measures their pairwise distances
by the sum of squared Mallows distances between individ-
ual histograms. In order to simplify the notation of Z

j
i in

the following definitions, we denote Z
j
i as δk, k = 1, 2, ..., K

where each k uniquely matches a particular i and j. Denote

Figure 5: Examples of positive and negative image
pairs and their orientation and displacement statis-
tics. Notice similarity between positive pairs and
difference between positive and negative.

the distance by D(δi, δj), δi, δj ∈ Θ, and then the global dis-
tance between δi and δj is defined as,

D(δi, δj) ,
d

∑

l=1

D
2(δi,l, δj,l), (5)

where d is the super-dimension of Θ.

4. GAUSSIAN RANDOM FIELD (GRF)
Since we can measure a distance between any two image

pairs, we represent all image pairs as vertices in a weighted
graph with edge weights representing the pairwise image-
pair distances. We then adopt GRF as the SSL engine in
our approach and the solution can be efficiently obtained
using matrix methods or belief propagation.

GRF is one of graph-based SSL algorithms [29]. The goal
of GRF is to first compute a real-valued labeling function,
h(·) : V − > R, on G with certain nice properties, and then
to assign labels for U based on h(·). The labeling function
is constrained to assign labels such as h(i) = hl(i) ≡ yi, on
L, i = 1, ..., l. The aim of the Gaussian field configuration
is to make unlabeled points that are nearby in the graph
have similar labels. This motivates the choice of quadratic
energy function, E(g) = 1

2

∑

i,j
wij(h(i) − h(j))2. In the

n-dim Euclidean space, x ∈ R
n, the weight matrix, W , can

be defined as, wij = exp
(

−∑n

d=1

(xid−xjd)2

2σ2
d

)

, where xid is

d-th component of the feature vector xi ∈ R
n, and σ1, ..., σn

are length scale hyperparameters for each dimension. There-
fore, nearby data points in the Euclidean space are assigned
large weights. The diagonal of W is set as 1, wii = 1.
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In order to assign a probability distribution on h(·), a

Gaussian random field is formed as pβ(h) = e−βE(h)

Zβ
, where

β is an ”inverse temperature” parameter and Zβ is the par-
tition function Zβ =

∫

h|hl=L
exp(−βE(h))dh, which nor-

malizes over all functions constrained to hl on L, where
(xi, yi) ∈ L, i = 1, ..., l. To compute the harmonic solution
of functions h(·), we minimize the quadratic energy function
E(h) subject to the labeled data constraint.

h = arg min
h|L=hl

E(h) = arg min
h|L=hl

1

2

∑

i,j

wij(h(i) − h(j))2,

(6)
in other words, it satisfies the equation, ∆ · h = 0 on all
unlabeled points in U and is subject to be equal to hl on
L. Here ∆ is called the combinatorial Laplacian, and given
in matrix form as ∆ = D − W, whereD = diag(di), di =
∑

j
wij .

The harmonic property indicates that the value of h at
each unlabeled point is the average of h at its neighborhood
points,

h(j) =
1

dj

∑

i

wijh(i), for j = l + 1, ..., l + u, (7)

which maintains the smoothness constraint of h(·) with re-
spect to the graph G. Expressed in the matrix form, Eq(4)
can be rewritten as h(·) = Q · h(·), where Q = D−1W . Be-
cause of the maximum principle of harmonic functions [29],
the solution of g is unique and it is either a constant or sat-
isfies 0 < h(j) < 1 for j ∈ U . To compute the harmonic
solution in terms of matrix operations, W is split into 4
blocks in terms of separation of L and U .

Wn×n =

[

Wll Wlu

Wul Wuu

]

n×n

. (8)

Denote the target labeling function h =

[

hl

hu

]

n×c

, and

hl(·) denotes labels on L, hu(·) denotes labels on U , and
c is the number of classes. The unique harmonic solution
∆ ·h(·) = 0 subject to h(·)|L = hl(·) ≡ yi, i = 1, ..., l is given
as a u × c matrix hu(·).

hu(·) = (Duu − Wuu)−1
Wul · hl. (9)

We can see that GRF has a quadratic loss function with
an infinite weight on labeled data, so that label values of the
labeled data are fixed, and a regularizer based on the graph
combinatorial Laplacian. Notice h(i) ∈ R, which allows for
the simple closed-form solution for the node marginal prob-
abilities in Eq.(9). The resulting classification algorithm for
GRF can be viewed as a form of nearest neighbor approach,
where the nearest labeled points are computed in terms of
a random walk on the graph. Some recent research has
applied GRF and harmonic functions to a number of com-
puter vision problems. Grady and Funka-Lea applied the
harmonic function method to medical image segmentation
problems, where a user labels different organs with a few
strokes [6]. Wu and Yang applied an iterative version of
GRF to semi-automatic object labeling tasks [25]. Fig. 6
shows the semi-supervised image matching (SIM) algorithm.

Input A set of n images, Γ, which leads to the form of its

image pair set, Θ, which includes n×(n−1)
2

examples (pairs).

Output Similarity label on each image pair from Θ. ‘+‘
indicates matched pair and ‘−‘ means the unmatched image
pairs.

Semi-supervised Image Matching

1. Separate Θ into L and U . Labels are given to examples
in L. U is the unlabeled set. U ≫ L in size.

2. Extract local keypoints and descriptors. Harris-affine
and Hessian affine detectors are used to detect local
keypoints on each image. SIFT descriptor is used.

3. Extract symmetrical keypoint pairs. Given two images,
a symmetrical matching criterion is applied to select
matched keypoint pairs.

4. Compute statistics of keypoint pairs. Both orientation
and displacement histograms are computed to charac-
terize the matching patterns between the two images.

5. Compute the Mallows distance among image pairs.
The pairwise distance in Θ is measured by the sum
of squared Mallows distances between individual his-
tograms extracted from individual image pairs.

6. Gaussian random field learning. Represent all image
pairs as vertices in a weighted graph, G. The predicted
labels on unlabeled pairs are obtained by solving har-
monic functions on the random field.

Figure 6: Semi-supervised Image Matching (SIM).

5. EXPERIMENTS
In this section, we report results on three different data

sets (Figure 8): Caltech-4 1, Caltech-101 [4] 2 and 15 scene
categories [11]. Follow the conditions used by [11], we
perform all feature extractions on the grayscale images even
when color images are available. All experiments are re-
peated ten times with different randomly selected images,
and we report the mean and standard deviation of per-class
accuracy from individual runs.

The first series of experiments was designed to compare
the contrastive performance of various classifiers and feature
spaces on Caltech-4 data set. Caltech-4 is a common bench-
mark data set containing four different object classes, which
are 1074 images of airplanes from the side, 1155 rear views
of cars, 450 frontal face images and 826 images of motor-
bikes from the side. Part of images from Caltech-4 are also
included in Caltech-101 set. Most of images have medium
resolution, i.e., smaller than 800*500 pixels. In the first ex-
periment, we split images of each class into halves. The first
50% of the images were used as training data and the rest
50% were used as testing data. For each image pair, two ori-
entation and two displacement histograms were extracted in
the feature space, where orientation had a fixed number of

1http://www.robots.ox.ac.uk/ vgg/data3.html
2http://www.vision.caltech.edu/Image Datasets/Caltech101
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Figure 7: SIM’s result on Caltech-4 dataset.

36 bins and displacement had 32 bins. For baseline classi-
fiers’ training, all features are concatenated thus we have a
total 136 one-dimensional features for orient+disp and 72
features for orient only.

Table 1 shows the accuracy for the following baseline clas-
sifiers: k Nearest Neighbor with L2 distance(kNN L2), Lin-
ear SVM(LSVM), Radial kernel SVM with ρ = 0.01 (RSVM)
and χ2 kernel SVM with ρ = 0.01 (SVM χ2). As shown,
SVM χ2 achieves the best performance followed by RSVM,
indicating that the χ2 distance is the best suited distance
metric for supervised learning of object category model.
Adding displacement info slightly improves the classification
performance. In our following experiments, the χ2 kernel
SVM using orient+disp features was chosen as our baseline
classifier due to its good performance.

Next, let us examine the behavior of our proposed method
given a varying amount of labeled data. Initially, our train-
ing data consisted of 10% of images from each class. All
the remaining 90% images from the same class were used as
unlabeled data. Figure 7 summarizes the accuracy of pre-
diction produced by SIM. For each percentage level tested,
we ran the algorithm 10 times, each time with a different
random selection of images from 3505 total images with the
same percentage of images per class. This result affirms
that the more labeled data, the better our method performs.
Given 50% of images per class, our method achieves about
90% accuracy, which gains a huge improvement over the
baseline and is comparable to the state of the art method
on the same dataset [7].

Our next set of experiments is on Caltech-101. This data
set contains 101 categories with from dozens to a few hun-
dred images per class. Most images are medium resolution

kNNL2 LSVM RSVM SVM χ2

orient 50.6±0.4 56.3±0.3 56.9±0.4 59.7±0.4
orient+disp 53.2±0.4 57.2±0.5 58.3±0.3 61.5±0.4

Table 1: Accuracy for different classifiers using
orientation and orientation plus displacement with
50%/50% training/testing splits on Caltech-4.

SVMχ2 SIM-O SIM Pyd [11]

minaret 84.8 91.3 97.8 97.6
windsor chair 80.3 84.5 92.3 94.6
joshus tree 75.8 83.9 88.2 87.9
okapi 71.4 82.3 86.5 87.8
cougar-body 26.4 35.6 42.8 27.6
beaver 0.42 24.8 27.2 27.5
crocodile 18.5 20.1 21.3 25.0
ant 32.8 42.7 46.8 25.0

Avg.Acc.101 53.4±0.9 60.3±0.7 64.8±0.7 64.6±0.8

Table 2: A comparison on Caltech101 dataset.
SVMχ2: our baseline; SIM-O: using only orientation
statistics; SIM: our method using full feature set.
Pyd [11]: pyramid matching with L = 2, M = 200.

smaller than 800*800 pixel. Most images have objects at
centers and some occupy most of the image. We followed the
experiment set up used in [11], namely, used 30 images per
class as training data and test on the rest. Table 2 summa-
rizes the comparison among different classifiers. In order to
better compare our method with spatial pyramid matching
method, we list overall result and individual results on eight
categories provided by Lazebnik et al. [11]. The results
indicate that utilizing unlabeled data improves the classifi-
cation performance by comparing SVM and SIM methods.
Also, using only orientation statistics can lead good perfor-
mance but still little worse than using the full feature set.
SIM achieves a accuracy rate of 64.8 ± 0.7 which is compa-
rable to 64.6 ± 0.8 by Lazebnik et al [11] and 66.2 ± 0.5 by
H. Zhang [26]. On the hard categories (like crocodile and
beaver) SIM also performs poorly. We conjecture that the
poor performance is due to textureless animal skins, incon-
sistent animal poses and camouflage animals have in their
environments.

Fig.9 shows comparison between Lowe’s matching crite-
rion [12] and our symmetrical matching criterion on two
outdoor scene images. As we can see, our criterion improves
matching performance in the second column and matchings
in (b) and (d) are essentially symmetrical.

The last experiment was designed to assess the perfor-
mance of our method on scene classification task. As seen
from above, our proposed method works very well on object
based image classification tasks. However, our approach was
not designed to deal with classifying scene images. Our fi-
nal set of experiments is on the 15 scene categories dataset
[4]. As seen in Figure 8, this dataset has 15 scene classes
and images are all in grayscale. Each class has 200 to 400
images and most images has medium resolutions. Table 3
shows results of classification experiments using 100 images
per class for training and the remaining for testing. The
results indicate our method underperformed on this data
set. In contrast, spatial pyramid match method which uti-
lized global scene features performed well [11]. We con-
jecture that the worse performance is because our method
is not suitable for scene classification. Most images in this
dataset usually do not have dominant objects at the center
and scenes usually changes from image to image, it is diffi-
cult to apply our proposed approach to learn the pairwise
relationship between two images from this kind of dataset
using only local keypoint matching information.
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SVMχ2 SIM-O SIM Pyramid [11]

Acc 51.3±0.5 53.8±0.5 58.4±0.6 81.4±0.5

Table 3: Results on 15 scene categories dataset.

6. CONCLUSIONS
In this paper, we have presented a semi-supervised learn-

ing approach to image matching tasks with several novelties
in the feature representation. Our approach uses only lo-
cal descriptors, without any other image features such as
shapes and edges. By formulating the matching task as a
semi-supervised problem, a large amount of unlabeled im-
ages can be leveraged with a small amount of labeled image
pairs to boost matching performance. We believe other vi-
sual information such as color, shape and geometric context
can further improve performance by tailoring these features
for the specific applications. One of underlying problems
associated with SIM is that each image is actually charac-
terized by salient objects (where rich local descriptors can
be found and matched). This can be good or bad. For ob-
ject oriented image retrieval, it is good because users want
to find images including the same objects, but SIM may not
perform well if the user wants to find images which includ-
ing uniform textured objects or regions such as a blue sky
or beach. In the future, we will study how to cope with
multiple objects in single image and change of object poses
between images.
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Figure 8: Example images from 3 diverse datasets which are used in our experiments.

Figure 9: Comparing Lowe’s matching criterion [12] and our sysmetrical criterion. Notice the asymmetrical
matchings by comparing (a) and (c). In constrast, each selected local keypoint in both images in (b) can
be found in (d). Notice that, from Img1 to Img2 both methods find the same matchings, (a) and (b), but our
method only keeps symmetrical ones which can be found from matching from Img2 to Img1 in (d).
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