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Sebastian Stüker1, Christian Fügen1, Susanne Burger2, Matthias Wölfel1

1Institut für Theoretische Informatik, Universiät Karlsruhe (TH), Karlsruhe, Germany
2Interactive Systems Laboratories, Carnegie Mellon University, Pittsburgh, USA

{stueker|fuegen|wolfel}@ira.uka.de, sburger@cs.cmu.edu

Abstract
Cross-system adaptation and system combination methods,
such as ROVER and confusion network combination, are
known to lower the word error rate of speech recognition
systems. They require the training of systems that are rea-
sonably close in performance but at the same time produce
output that differs in its errors. This provides complemen-
tary information which leads to performance improvements.
In this paper we demonstrate the gains we have seen with
cross-system adaptation and system combination on the En-
glish EPPS and RT0-05S lecture meeting task. We obtained
the necessary varying systems by using different acous-
tic front-ends and phoneme sets on which our models are
based. In a set of contrastive experiments we show the influ-
ence that the exchange of the components has on adaptation
and system combination.
Index Terms: automatic speech recognition, system com-
bination, cross adaptation, EPPS, RT-05S.

1. Introduction
In state-of-the-art speech recognition systems it is common
practice to use multi-pass systems with adaptation of the
acoustic model in-between passes. The adaptation aims at
better fitting the system to the speakers and/or acoustic en-
vironments found in the test data. It is usually performed on
a by-speaker basis, obtained either from manual speaker la-
bels or automatic clustering methods. Common adaptation
methods try to transform either the models used in a system
or the features to which the models are applied.

Three adaptation methods that can be found in many
state-of-the-art systems are Maximum Likelihood Linear
Regression (MLLR) [1], a model transformation, Vo-
cal Tract Length Normalization (VTLN) [2] and feature-
space constrained MLLR (fMLLR) [3], two feature-
transformation methods. Adaptation is performed in an un-
supervised manner, such that the error-prone hypotheses ob-
tained from the previous decoding pass are taken as the nec-
essary reference for adaptation. Generally, the word error
rates of the hypotheses obtained from the adapted systems

are lower than those for hypotheses on which the adaptation
was performed. This sequences of adaption and decoding
make it possible to incrementally improve the performance
of the recognition system. Unfortunately, this loop of adap-
tation and decoding does not always lead to significant im-
provements. Often, after two or three stages of adapting a
system on its own output, no more gains can be obtained.
This problem can be overcome by adapting a system S2 on
the output of a different system S1, a process commonly re-
ferred to as cross-system adaptation. It is believed that the
gains from cross-system adaption come from the fact that S1
makes different errors than S2. S2 thus gets complementary
information that it could not gain from its own output. It is
also possible to utilize the complementary information con-
tained in hypotheses from different recognition systems by
using system output combination methods, such as ROVER
[4] and confusion network combination (CNC) [5].

For both methods it is necessary to build multiple sys-
tems that are reasonably close in performance to each other,
but which produce hypotheses with complementary knowl-
edge. We report on our experiences with adapting across
systems which vary in phoneme set and acoustic front-
end, and the combination of outputs using CNC. We report
and compare results on the English European Parliamentary
Speeches Task [6] and the Lecture Room task of the NIST
Rich Transcription 2005 Spring Meeting Recognition Eval-
uation (RT-05S). The next section describes previous related
work and how our work differs from it. Section 3 describes
and compares the two phoneme sets used for the experi-
ments, while Section 4 introduces the acoustic front-ends
applied in our experiments. Section 5 provides the results
of the experiments.

2. Related Work

For their NIST 2004 Fall Mandarin Broadcast News evalua-
tion system [7], Yu et al. used two different kinds of models;
one set based on phonemes, the other based on initial-final
semi-syllables. The two sets of models were used for cross-
adaptation and for system combination. In our work, all



sets of models are based on phonemes, since for English
syllable-based models have generally been found not to be
competitive with phoneme-based models.

In [8], Stolcke et al. used two different kinds of front-
ends, one MFCC and one PLP based, for cross-adaptation
and system combination via confusion networks. They did
not change their phoneme set for the different systems,
while we varied the phoneme set for the models. We fur-
ther used an MVDR front-end instead of a PLP front-end,
since we found it to be superior to PLP in many tasks.

Lamel and Gauvain experimented in [9] with different,
either reduced or extended, versions of the same phoneme
set, used them in a cross-adaptive way and combined the
system results with ROVER. Though the performances of
the different phoneme sets were basically the same, ROVER
gave a significant improvement. The front-ends remained
unchanged. Also, the dictionaries for the different phoneme
sets were essentially created from the same base dictionary,
while in our experiments the dictionaries for the phoneme
sets were derived from differing base dictionaries, and miss-
ing pronunciations were created with differing tools.

3. Phoneme Sets and Dictionaries
3.1. Phoneme Sets

(We use the term phoneme rather than phone because even
though the described sets include a few allophones, they
are working on phoneme level.) We experimented with the
CMU dictionary - CMUDICT, and LDC’s Call Home dic-
tionary - Pronlex. Our version of CMUDICT consists of 45
phonemes and allophones and our version of Pronlex con-
tains 44 phonemes and allophones. Despite using a slightly
different approach regarding the symbols used to represent
the phonemes, the inventories are the same for the five diph-
thongs or vowel-glide sequences {eoYOW} {EY OW AY
OY AW}, nine fricatives {szSZfvTDh} {S Z SH ZH F V
TH DH HH}, two affricates {CJ} {CH JH}, six plosives
{pbtdkg} {P B T D K G} and three nasals {mnG} {M N
NG}. Both systems contain the seven vowels {iIE@acU}
{IY IH EH AE AA AO UH}. We used the extended Pronlex
set to include {A u} which map to the already existent {AH
UW} in CMUDICT (e.g. the vowels in “two” and “hut”).
There are four approximants {lrwy} {L R W Y} in both
systems. Pronlex additionally allows for an allophone of the
voiced velar approximant {w}: a voiced velar approximant
with initial velar friction noted as {H} (it sounds like a /h/
followed by /w/). CMUDICT only uses {W} which denotes
the version with more initial friction and the version without
friction. The systems also differ in the number of reduced or
centralized vowels: CMUDICT uses {IX} for centralized /i/
(for example, in the last syllable of “laughing”) but also uses
a symbol for a short lowered closed front vowel: {IH}. In
Pronlex both the lowered close front vowel and the central-

ized version of it are labeled with {I}. Both systems provide
symbols for the mid central vowel {x} {AX} (e.g. the final
sound in “Maria”) and the open central vowel {R} {ER}
(e.g. in “hurt” or the final sound in “father”). However, our
extended version of CMUDICT differentiates between the
the final sounds of “father”: {ER} and “answer”: {AXR}.

3.2. Dictionaries

The necessary pronunciation dictionaries for training and
testing were created in different ways for the two differ-
ent phoneme sets. In the case of the Pronlex phoneme
set, the initial version of all lexicons was a merger of
the Callhome english lexicon 97061 and the LIMSI SI-284
training dictionary. Frequent missing words were added
by hand, all other words were generated with the help
of William Fisher’s grapheme-to-phoneme tool available
through NIST [10]. For the CMUDICT phoneme set, we
used the dictionary from the ISL Meeting Transcription
System [11] as a base dictionary and created missing pro-
nunciations using Festival [12].

4. Acoustic Front-Ends
In our experiments we used four different kinds of acous-
tic front-ends: MFCC-I, MFCC-II, MVDR-I, and MVDR-
II. Two are based on the traditional Mel-frequency Cep-
stral Coefficients (MFCC) and two are based on the warped
minimum variance distortion less response (MVDR). The
second front-end replaces the Fourier transformation by a
warped MVDR spectral envelope [13], which is a time do-
main technique to estimate an all-pole model using a warped
short time frequency axis such as the Mel scale. The use of
the MVDR eliminates the overemphasis of harmonic peaks
typically seen in medium and high pitched voiced speech
when spectral estimation is based on linear prediction.

For training, both front-ends have provided features ev-
ery 10 ms. During adaptation and decoding this was some-
times changed to 8 ms. In training and decoding, the fea-
tures were obtained either by the Fourier transformation fol-
lowed by a Mel-filterbank or the warped MVDR spectral
envelope.

We used a model order of 80 for the MVDR-I front-end.
The resulting 129 spectral coefficients were then reduced to
30 with a linear filterbank. Since the warped MVDR already
provides the properties of the Mel-filterbank, namely warp-
ing to the Mel-frequency and smoothing, a filterbank has
not been used for the MVDR-II front-end and the model
order was just 22. The advantage of this approach is an
increase in resolution in low frequency regions. This can-
not be attained with traditionally used Mel-filterbanks and
unequal modeling of spectral peaks and valleys used to im-
prove noise robustness, due to the fact that noise is mainly
present in low energy regions.



Acoustic Front-End
MFCC-II MVDR-II

Phoneme Set 8ms 10ms 8ms 10ms
CMU 13.7% 14.0% 13.8% 13.7%

Pronlex 14.6% 14.6% 14.6% 15.0%

Table 1: Result Overview of the cross adaptation experiments for
the EPPS task. Adaptation is performed on the CNC output from
the second stage of the adaptation scheme.

For all front-ends, VTLN was applied either in the lin-
ear domain for MFCC-I and MFCC-II, or in the warped
frequency domain for MVDR-I and MVDR-II. The MFCC
uses 13 cepstral coefficients while for the MVDR the num-
ber of cepstral coefficients has been increased to 15 (EPPS)
or 20 (RT-05S). The mean and variance of the cepstral
coefficients were normalized on a per-utterance basis. In
the case of MFCC-I, MVDR-I, and MVDR II, seven ad-
jacent frames were combined into one single feature vec-
tor. For MFCC-II the cepstral coefficients were combined
with normalized signal energy, approximations of the first
and second derivative, and zero crossing rate. For MFCC-I,
MVDR-I, and MVDR-II, the resulting feature vectors were
then reduced to 42 dimensions using linear discriminant
analysis (LDA). LDA was applied to MFCC-II without di-
mension reduction.

5. Experiments
All experiments were performed with the help of the Janus
Recognition Toolkit (JRTk) featuring the IBIS single pass
decoder [14]. The systems described below have, at least in
part, been used for the Spring 2006 TC-STAR EPPS evalu-
ation [15] and the RT-06S Lecture Task [16].

5.1. European Parliamentary Speeches

The European Parliamentary Speeches Task (EPPS) focuses
on transcribing speeches given in the European Parliament.
The word error rates in the experiments reported below were
measured on the official 2006 development set, which con-
sists of three hours of speech from 41 politicians. The
acoustic models were trained on the official EPPS train-
ing data which consists of about 100 hours of transcribed
speech from politicians and interpreters. Before starting the
cross-system adaptation experiments we first ran two adap-
tation stages which used only CNC for system combination.
In the first stage we performed two decodings with speaker
independent systems. Both use the Pronlex phoneme set
based dictionary, but one utilizes the MVDR-II front-end,
while the other uses the MFCC-I front-end, both with a
frame shift of 10 ms. The two outputs are then combined
using CNC. Then, in the second stage, three acoustic mod-

pass CMU-I CMU-II PRON-MVDR CNC
3rd 24.9% 25.4% 23.9%
4th 25.0% 24.8% 23.8%
4th 24.6% 23.2%

Table 2: Results Overview of cross system adaptation on RT-
05S-eval. The Pronlex system uses an MVDR front-end and was
adapted on the CNC output of the 3rd pass. CNC with the Pronlex
system was done by using also the lattices of the 3rd pass systems.

els are adapted on the first stage’s CNC output using MLLR,
VTLN, and fMLLR. All three systems use the Pronlex Dic-
tionary. One system is based on the MVDR-I front-end, one
on the MVDR-II front-end, and one on the MFCC-I front-
end, all three using an 8 ms frame-shift. Again, the results
are combined with CNC, yielding a WER of 14.8%.

In order to examine the effect of adaptation across
phoneme sets, we ran eight contrastive experiments, the re-
sults of which are summarized in Table 1. We adapted eight
different systems on the output of the CNC in the second
stage. Four of them are based on the Pronlex phoneme set,
the other four on the CMU phoneme set. For both phoneme
sets we used one system based on the MFCC-II front-end
and one based on the MVDR-II front-end. Both front-ends
were adapted and tested with an 8 ms and a 10 ms frame-
shift. Since in the first two stages only systems were used,
which were based on the Pronlex phoneme set, the experi-
ments with the systems now using CMU’s phoneme set in
the third stage show the effect of cross phoneme-set adapta-
tion. The experiments with the Pronlex-based systems in
the third stage correspond to the conventional adaptation
scheme.

As can be seen from the results, another round of adap-
tation using the Pronlex systems does not give any signifi-
cant gain in word error rate (0.2% abs. at maximum). How-
ever, adapting a system based on the CMU phoneme set,
further reduces the word error rate by up to an absolute
value of 0.9% to 13.7% in the best case.

5.2. Lecture Task

For the lecture task, we cross-adapted systems (CMU-I and
CMU-II) based on the CMUDICT phoneme set with differ-
ent front-ends (MFCC-I and MVDR-II) until we received no
further gains. We then added a system PRON-MVDR based
on the Pronlex phoneme set using the MVDR-II front-end
to the cross-adaptation. The experiments were done on the
close talking condition of NIST’s RT-05S evaluation data.

All systems, CMU-I, CMU-II and PRON-MVDR were
trained on approximately 100 hours of data, consisting of
meetings from ICSI and CMU, TED lectures and CHIL lec-
tures. The resulting MVDR and FFT systems had nearly
16,000 distributions over 4,000 models with a maximum
of 64 Gaussians per model, the Pronlex system 24,000 dis-



tributions over 3,000 models, also with a maximum of 64
Gaussians per model. All systems were trained with either
ML-SAT or FSA-SAT and use the same vocabulary and lan-
guage models for decoding.

Table 2 shows a part of our RT-06S evaluation system.
As can be seen, the cross-system adaptation of the CMU-I
and CMU-II system leads to no further improvements. Even
though the CMU-II system improves in the fourth pass by an
absolute value of 0.6%, the confusion network combination
of the lattices of the same pass only changed by 0.1%. But
if we adapt the PRON-MVDR system on the CNC output
of the third pass and do a confusion network combination
on the lattices from the CMU-I and CMU-II system of the
third pass and the Pronlex system in the fourth pass, we can
improve the CNC output by an absolute value of 0.7%.

6. Conclusions
In decoding set-ups in which the models of the system are
incrementally adapted on the output of previous decoding
passes, the models are often saturated after two or three it-
erations of adaptation. Further adaptation steps on the out-
put from the same system yield no more significant gains.
However, when using the output of systems that differ in
some components, it is possible to obtain further gains
due to complementary knowledge. In our experiments we
have shown how systems with different phoneme sets and
acoustic front-ends can be used in a cross-system adapta-
tion scheme in order to get higher gains out of adaptation.
Further we have shown how the outputs from the different
systems can be combined using confusion network combi-
nation, leading to further reductions in word error rate.
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Schlüter, and Hermann Ney, “Cross domain automatic tran-
scription on the tc-star epps corpus,” in ICASSP, Philadel-
phia, PA, USE, 2005.

[7] Hua Yu, Yik-Cheung Tam, Thomas Schaaf, Sebastian Stüker,
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