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Abstract

This paper describes the 2006 lecture recognition system devel-
oped at the Interactive Systems Laboratories (ISL), for individual
head-microphone (IHM), single distant microphone (SDM), and
multiple distant microphones (MDM) conditions. It was evaluated
in RT-06S rich transcription meeting evaluation sponsored by the
US National Institute of Standards and Technologies (NIST). We
describe the principal differences between our current system and
those submitted in previous years, namely, improved acoustic and
language models, cross adaptation between systems with differ-
ent front-ends and phoneme sets, and the use of various automatic
speech segmentation algorithms. Our system achieved word error
rates of 38.5% (53.4%) and 22.9% (32.2%), respectively, on the
MDM and IHM conditions of the RT-05S (RT-06S) lecture evalu-
ation set.
Index Terms: speech recognition, lectures, distant speech, CHIL,
RT-06S.

1. Introduction
In this paper, we present the ISL’s most recent speech-to-text sys-
tem for lectures, which has evolved significantly over previous ver-
sions [1, 2, 3] and which was evaluated in the NIST RT-06S Rich
Transcription Meeting Evaluation.

In [1] we described our improvements over the CHIL [4] eval-
uation system of January 2005 [2]. The main improvements came
from a better selection of training material, new vocabularies and
better language models. Our system development experiments
were initially performed on the NIST RT-05S development set, but
subsequently repeated on the RT-05S evaluation data, as the latter
set was richer in that it contained more unique speakers.

The systems described in [1] and [3] shared many common
elements; e.g., front-end, phoneme set, training strategy, etc. The
system described in this paper differs in several important ways.
Notably, we used only speaker-adapted acoustic models. Even
in the first pass, we used models already trained with vocal tract
length normalization (VTLN), and employed speaker-based incre-
mental adaptation during decoding. Several acoustic models with
different front-ends were trained: besides our standard FFT MFCC
front-end, we also trained a system with a Minimum Variance Dis-
tortionless Response (MVDR) [5] front-end. Furthermore, in ad-
dition to our standard phoneme set, which was used in RT-04S [3],
we also trained a system based on the PRONLEX phoneme set, in
the hope that it would improve the overall result [6, 7], by using
the system for cross-adaptation. Last but not least, we used a dif-
ferent speech segmentation algorithm compared to the one used in
the RT-04S evaluation system [8].

CMU ICSI NIST TED CHIL Hub4-BN
11h 72h 13h 13h 10h 180h

Table 1: Duration of used acoustic model training data.

2. Data
2.1. Acoustic Model Training Data

Table 1 contains an overview of the acoustic model training data.
CMU, ICSI, and NIST are audio recordings of meetings [9], TED
(Translingual English Database) [9], and CHIL are audio record-
ings of lectures and Hub4-BN [9] contains recordings of broad-
cast news. All the acoustic data is in 16 kHz, 16 bit quality and
recorded with close talking microphones, except for the training
data contributed by CMU, which was collected with lapel micro-
phones. For ICSI and NIST, far distant channels were also avail-
able.

2.2. Development and Test Data

The decoding experiments described in this paper were conducted
on the following data sets:

DEV The lectmtg portion of the official RT-06S development set,
which is identical to the RT-05S evaluation set (150min).

EVAL The lectmtg portion of the RT-06S evaluation set
(190min).

This year’s RT-06S primary condition was MDM and was
scored with overlap, i.e. overlap regions were labeled in the ref-
erence and were scored. The results on the DEV data presented
in this paper were scored without taking regions with overlapping
speech into account.

3. Automatic Segmentation
As already mentioned, the current system uses a different auto-
matic speech segmentation approach from previous years [8]. For
the IHM condition, automatic segmentation is especially difficult
in that significant cross-talk from other speakers is present in the
recordings, and this cross-talk should be ignored during automatic
transcription. The following speech activity features are extracted
on a per frame basis, with a frame size of 32 msec and a frame shift
of 10 msec: frame energy in decibels (dB), mean and variance
normalized energy passed through a sigmoid function, energy-
normalized linear prediction error [10], slope along the frequency
axis of a mel-warped filter-bank spectrum , and speech class pos-
terior computed from a multi-layer perceptron (MLP) trained with
standard MFCC features to classify speech and non-speech. Using
these features, the segmentation is performed in three steps:



1. Background speech activity rejection: For each frame, out
of all microphones available for a particular meeting, the
microphone with the highest energy is chosen as the cur-
rent active microphone. From that, unreliable estimates of
microphone switches are pruned out, (a) by checking for
the presence of minimal percentage of voiced speech using
the normalized energy, energy-normalized linear prediction
error, and speech class posterior, and (b) by checking for a
constraint of minimum duration of 1 sec. Finally, regions
where the current microphone is active are tagged as re-
gions of foreground speech.

2. Foreground speech activity detection: Within the regions
of foreground speech tagged by the first step, frames with
negative spectral slope, high normalized energy, and low
energy-normalized linear prediction error are further tagged
as foreground speech. These estimates are further smoothed
out with a median filter of 0.5 sec duration.

3. Sentence breaking: Regions of foreground speech at the
output of the second step are further cut into shorter seg-
ments as follows: The point of high confidence non-speech
is searched for in the region between times 0.5 sec and 15.0
sec, and a break is made at that point. Then, with that break
as the new starting point, the above procedure is repeated
to find more break points until the end is reached. Confi-
dences for non-speech regions are measured based on their
duration and average energy level.

For IHM, it is assumed that after the segmentation all speech from
a single microphone correspond to a single speaker. For SDM,
only the sentence breaking step is performed, as all speech in the
SDM channel should be recognized and the recognizer is assumed
to be the best available system for discarding non-speech. The
resulting segments are further tagged with speaker labels using a
hierarchical agglomerative speaker clustering technique [8]. For
the MDM condition, a single best channel is first determined on
the basis of average SNR. Thereafter, the same processing used in
the SDM condition is applied to this single best channel.

4. System Training and Development
All experiments described in this paper were run using the Janus
Recognition Toolkit (JRTk) and the Ibis single pass decoder [11].

4.1. Signal Processing

In contrast to our RT-04S system, we used two different front-ends
to increase performance via cross-adaptation. The first front-end
uses a 42-dimensional feature space based on MFCC with linear
discriminant analysis (LDA) and a global STC transform [12] with
utterance-based cepstral mean subtraction (CMS). It is identical to
the one used in RT-04S. The second front-end replaces the Fourier
transformation by a warped minimum variance distortionless re-
sponse (MVDR) spectral envelope of model order 30. Due to the
properties of the warped MVDR, neither the Mel-filterbank nor
any other filterbank was used. The advantages of the MVDR ap-
proach are an increase in resolution in low frequency regions rel-
ative to the traditionally used Mel-filterbanks, and the dissimilar
modeling of spectral peaks and valleys to improve noise robustness
as noise is present mainly in low energy regions. Furthermore, the
number of cepstral coefficients has been increased from 13 to 20.
As before, a 42-dimensional feature space after LDA and a global
STC transform with utterance based CMS was used.

Expt. System WER
A ICSI+NIST+TED 34.8%

+ CMU 35.1%
+ BN97 36.0%

B standard 32.3%
second incr. growing 32.0%

C w/o CHIL 32.0%
with CHIL 31.5%

Overall ICSI+NIST+CMU+TED+BN, 6000 32.6%
ICSI+NIST+TED, 4000 31.5%

second pass ICSI+NIST+CMU+TED+BN, 6000 28.4%
ICSI+NIST+TED, 4000 27.0%

Table 2: Training experiments: WERs computed with a first pass
FFT systems with incremental VTLN and FSA estimation and a
frame shift of 10 msec on the IHM condition of DEV.

4.2. Acoustic Model Training

The training setup was based on experiments performed during the
development of the lecture translation system [1]. We selected the
training data to perform best on close talking audio, thereby skip-
ping the CMU meeting corpus and the Hub4-BN training material,
and yielding a gain of approx. 1% absolute (Table 2 A). We also
changed the model set used in RT-04S slightly by adding noise
models for laugh and other human noises to the existing breath
and general noise models, and splitting the filler model into one
for monosyllabic and another one for disyllabic fillers.

Acoustic model training was performed with fixed state align-
ments, which were written by a small system (2,000 codebooks)
trained on the above mentioned corpora. Both the MVDR and FFT
systems were trained in the same way, resulting in a size of 16,000
distributions over 4,000 models, with a maximum of 64 Gaussians
per model. The training was similar to the one used in [1], with
one modification. A second pass for incremental growing of Gaus-
sians was performed after the STC training, so that the complete
training procedure is now as follows: (1) a first incremental grow-
ing of Gaussians, (2) estimation of the global STC matrix, (3) a
second incremental growing of Gaussians; this leads to an addi-
tional gain of 0.3% (see Table 2 B). To train the distributions for
the semi-continuous system and to compensate for the occasion-
ally worse fixed-state alignments, 2 iterations of Viterbi training
were performed.

Since the 10hrs of CHIL training data were released relatively
late, we used MAP with a weight of 0.8 for the CHIL data to adapt
our current models and gained another 0.6% (Table 2 C). For the
ML-SAT models, three additional iterations of ML-SAT [13] were
run, wherein feature space adaptation and MLLR parameters were
estimated for all speakers in the training set; for these iterations, a
weight of 4.0 was applied to the CHIL training data. Comparing
the resulting system to the system used in [1], we improved our
second pass result by 1.4% absolute (see overall results in Table 2,
the second row corresponds to the new system).

In addition to the FTT and MVDR systems, we trained an-
other system using the PRONLEX phoneme set. The initial ver-
sions of the training and recognition lexica were a merger of the
callhome english lexicon 97061 dictionary and the LIMSI SI-284
training dictionary. Frequently missing words were added man-
ually, and all other missing words were generated automatically
with the help of a grapheme-to-phoneme conversion tool [14]. For
the systems based on this phoneme set, context independent acous-
tic models were initialized by taking the global mean over all train-



ing data. Several iterations of Viterbi training were then applied in
order to train the models. From these context-independent mod-
els, forced alignments were obtained and fully context-dependent
models were clustered in the same way as for the other phoneme
set. The training of the context-dependent models followed the
same scheme as for the other phoneme set, with the difference
that 24,000 distributions over 3,000 models with a maximum of
64 Gaussians per model were used and only feature space adapta-
tion parameters were estimated during ML-SAT.

For the far distant channels, we adapted the models by ap-
pending two Viterbi training iterations using the far distant meet-
ing (ICSI, NIST) data to the close talking models.

4.3. Language Model Training

A 4-gram mixture language model (LM) was used, with compo-
nents trained on transcripts from the following corpora: CHIL
lectures (45k words), AMI meetings (203k), non-AMI (ICSI,
CMU, NIST, LDC) meetings (1.1M), TED (98k), Hub4 Broadcast
News (131M), recent speech/language proceedings text (2002-
2005) (23M), web data from UW (150M words related to ICSI
meetings), and UKA web data collections described further below.

We used the strategy in [15] for web text collection, both with
and without changes to the query generation process. In the first
collection (web-L), the most frequent 3-grams and 4-grams (1k)
from the CHIL lecture data were combined to form queries, as
in [15]. In the next collection (web-LP), queries were formed by
combining the frequent CHIL n-grams with topic phrases selected
from the proceedings data. Finally, a last collection (web-MP)
used queries that combined frequent n-grams from the non-AMI
meeting data and the topic phrases. The topic phrases were gen-
erated by: computing bigram tf-idf (term frequency – inverse doc-
ument frequency) weights for each paper in the proceedings data,
zeroing all but the top 10%, averaging these vectors over the col-
lection, and taking the top 1,400 bigrams excluding any with stop-
words. The topic bigrams were mixed randomly with the general
phrases until the desired number of queries (14k) were generated.
Each collection was perplexity filtered to roughly 150M words so
that size would be comparable to the UW meeting-based web data,
but the raw collections ranged in size from 559M-1.1B words.

LMs were built using the SRILM-toolkit [16] with modified
K-N discounting [17]. The mixture weights were tuned on a held-
out set of CHIL lectures, with pruning after interpolation. Results
that follow are for our development set (RT05eval), on which the
LM with no web data gave a perplexity (PPL) of 142 and 31.1%
WER. Adding any web data gives a significant improvement, and
both web-L and the UW web data alone yielded similar perfor-
mance (PPL=132, WER=30.2), though the web-L queries were
better matched to the lecture task. A small gain was obtained by
using both components (LM-I: PPL=130, WER=30.0), and replac-
ing web-L with two components based on web-LP and web-LM
again led to a small improvement (LM-II: PPL=128, WER=29.9).
LM-I was used in the MDM and SDM conditions, and LM-II was
used in the IHM condition. Compared to the old 4g LM used in [1],
we gained 1.6% absolute.

With use of the UKA web data, the mixture weights for
both TED and BN were very small, and subsequent experiments
showed a slight gain in performance when these were removed.
In addition, when UKA larger collections are used (less perplex-
ity filtering), the weight for the UW meeting-based web collection
becomes small.

1st (FFT) 2nd (MVDR) 3rd (FFT) 4th (MVDR)
A 34.2% 30.0% 27.9% 25.5%
B 34.2% 27.0% 25.4%
C 34.2% 26.8% 25.3%
D 31.5% 26.5% 25.4% 25.0%

Table 3: Adaptation experiments, with different acoustic models
on the IHM condition of DEV.

4.4. Recognition Lexicon

The dictionary contains 58,695 pronunciation variants over a vo-
cabulary of 51,731. For the MVDR and FFT system, pronun-
ciations which were unknown in our base dictionary were gen-
erated using Festival [18]. For the PRONLEX system, missing
words were generated automatically with the help of a grapheme-
to-phoneme conversion tool [14]. The vocabulary (same for all
systems) was derived by using the corpora: BN, Switchboard
PhaseI+II, meetings (ICSI, CMU, NIST, AMI), TED and CHILa.
After applying individual word-frequency thresholds to the cor-
pora, we checked the resulting vocabularies with ispell to filter out
spelling errors. The OOV-rate on DEV was 0.65%.

5. Experiments and Results
5.1. Decoding Strategy

We performed several experiments to find the best decoding and
cross-system adaptation strategy. First we compared different
adaptation schemes using different acoustic models from differ-
ent training stages (Table 3). The following acoustic models were
available: speaker-independent models (SI), VTLN-trained mod-
els (VTLN), speaker-adapted models (ML-SAT) and were used
on a single chain of adaptation passes with alternated front-end
(MVDR, FFT). VTLN (V) [19], constrained MLLR (FSA, F) [20]
and MLLR (M) [21] adaptation was always done on the confidence
weighted hypotheses of the previous pass, whereas the parameters
were kept fixed during the subsequent decoding pass. All passes
after the first pass were decoded with a frame shift of 8msec in-
stead of 10msec, which gives a gain of about 1% absolute.

In A, we performed the adaptation strictly step-by-step and
used only matching models: SI decoding, V estimation and VTLN
decoding, V+F estimation and ML-SAT decoding, V+F+M adap-
tation and ML-SAT decoding. In B, we always applied V+F+M
adaptation: SI decoding, V+F+M adaptation and VTLN decod-
ing, V+F+M adaptation and ML-SAT decoding. In C, we modi-
fied the second step of B to use V+M adaptation and VTLN de-
coding. Finally, in D, we used only the speaker-adapted VTLN
and ML-SAT models: VTLN decoding with incremental speaker-
based VTLN and FSA estimation, V+F+M adaptation and VTLN
decoding, V+F+M adaptation and ML-SAT decoding and in the
fourth pass the same again. As can be seen, there is no significant
difference between B, C, and D; we chose to use D for our RT-06S
evaluation systems because it is then not necessary to train another
speaker-independent model. Instead, we can easily use models
from an earlier training step of the ML-SAT models as a first pass.

In another set of experiments, we followed results presented
in [6, 7] and experiences collected during the development of a
system for Transcribing English European Parliament speeches.
It was seen that we gain significantly (approx. 1.5% absolute)
from cross-adaptation between systems with different front-ends
(MVDR, FFT), and that, when cross-adaptation between MVDR
and FFT leads to no further gains, cross-adapting with the PRON-
LEX system improves the WER after doing confusion network



Pass IHM SDM MDM
DEV first pass 30.3 50.9 46.9

second pass 25.0 45.9 42.0
third pass 23.9 43.4 38.5

fourth pass 23.2
fifth pass 22.9

EVAL final pass 32.2 54.7 53.4
RTx 190 110 120

Table 4: Overall results and real-time factors on DEV and EVAL.

combination (CNC) [22] with the PRONLEX system in addition
by 0.7% absolute.

5.2. Channel Combination and Selection for MDM

In RT-04S, the channel combination was done, by simply decoding
all channels and doing a confusion network combination on the
resulting lattices over all channels. No selection was done, which
means that the computational load for one pass was relatively high.
This year, we were able to reduce the computational load by 70%
with no increase in WER by doing both channel combination and
selection. Therefore we built a single channel at the waveform
level, by selecting only those channels for an utterance with a high
signal to noise ratio (SNR), which also leads to an improvement in
SNR of 2 dB on the DEV set. In addition to the speed-up on MDM
we gained 4% in WER with this blind channel combination (BCC)
approach compared to the SDM condition (see first and second
pass overall results in 4). By further adding selected utterances/
channels by their SNR ratio to the confusion network combination
of the BCC channel we saw an additional gain of 0.5%. A detailed
explanation is given in [23].

5.3. Overall System Performance

Table 4 lists the overall system results on DEV and EVAL. The
WERs per pass are after CNC of the lattices of the MVDR, FFT,
and/or PRONLEX system used in that pass. In each pass of the
IHM system, both an MVDR and an FFT system were used and
cross-adapted on the previous pass. In the fourth pass, we only
used the PRONLEX system and adapted the fifth pass systems
(FFT, PRONLEX) on the CNC result of lattices from the third and
fourth pass. As described above (Section 5.2), for the first and sec-
ond pass on MDM blind channel combination was used. For the
third pass we added also additional selected utterances/ channels
to the confusion network combination step. As for IHM we used
in each pass an MVDR and FFT system, but in difference to IHM,
the MVDR system was adapted on the CNC result and the FFT
system of the MVDR result of the subsequent pass. first and sec-
ond pass were decoded with far distance acoustic models, but in
the third pass, we used the close talking acoustic models.
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