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Abstract

We integrated the Latent Dirichlet Allocation (LDA) approach,
a latent semantic analysis model, into unsupervised language
model adaptation framework. We adapted a background language
model by minimizing the Kullback-Leibler divergence between
the adapted model and the background model subject to a con-
straint that the marginalized unigram probability distribution of the
adapted model is equal to the corresponding distribution estimated
by the LDA model – the latent semantic marginals. We evaluated
our approach on the RT04 Mandarin Broadcast News test set and
experimented with different LM training settings. Results showed
that our approach reduces the perplexity and the character error
rates using supervised and unsupervised adaptation.

Index Terms: unsupervised LM adaptation, LSA marginals, La-
tent Dirichlet Allocation, Mandarin Broadcast News

1. Introduction
In automatic speech recognition, unsupervised language model
(LM) adaptation is an attractive research area since the automatic
transcription from the decoder provides in-domain information
which may be useful for adapting the background LM. One chal-
lenge is that the automatic transcription usually contains recog-
nition errors. Minimizing their effect is important since it is un-
desirable to reinforce the errors back to the background LM after
adaptation. Different LM adaptation techniques have been pro-
posed in the literature. One technique proposed in [1] attempts to
adapt the background LM by minimizing the Kullback-Leibler di-
vergence between the adapted LM and the background LM subject
to a constraint that the marginalized unigram distribution of the
adapted LM is equal to some unigram distribution which is esti-
mated using an in-domain text data. They called the latter as “dy-
namic marginals”. Similar idea was also proposed earlier in [2].
The approach was shown to reduce the perplexity and the recogni-
tion errors successfully when in-domain supervised text data were
available for LM adaptation. However, they [1] reported degra-
dation of recognition performance when the background LM was
adapted on automatic transcription. We postulate that this may be
caused by the recognition errors that were not smoothed out prop-
erly in estimating the dynamic marginals based on relative word
frequency.

In this paper, we revisit their approach but we propose using
the Latent Dirichlet Allocation (LDA) model [3], a Bayesian latent
semantic analysis approach, to estimate the dynamic marginals
based on automatic transcription. As a latent semantic model, the
LDA model contains a set of unigram LM each of which describes
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rd distribution of a latent topic. In our earlier work [4], we
essfully applied the LDA model into unsupervised LM adap-
n by interpolating the background LM with the dynamic uni-

LM estimated by the LDA incrementally. In this paper, we
ose using the LDA-adapted unigram as the dynamic marginal.
advantage is that we only need to estimate the topic mix-
weights to compute the LDA-adapted unigram which can be
robustly on small amount of adaptation data compared to rel-
word frequency. We conjecture that the LDA model provides

othing effect on recognition errors since the model is adapted
oosting the topic mixture weights instead of directly boosting
robability of misrecognized words in the automatic transcrip-

. Similar approach has been explored using probabilistic La-
Semantic Analysis (pLSA) in [5] but on an supervised setting
re short text descriptions of the test audios were utilized. We
loyed the LDA model which provides regularization over the
A model due to the Bayesian nature of the LDA model, and
ored our approach on the unsupervised setting.

The paper is organized as follows: In Section 2, we provide
verview of the Latent Dirichlet Allocation model and the es-
tion of the LDA-adapted marginals using Variational Bayes
rence. In Section 3, we describe the LM adaptation approach,
wed by experiments in Section 4 and conclusions in Section 5.

2. Review of Latent Dirichlet Allocation
goal of LSA is to extract the latent topics from a text cor-
which contains a set of documents in an unsupervised fash-
In broadcast news, a document usually refers to a piece of

s story within which the latent topics are consistent. Various
techniques has been proposed and applied across different

arch fields, such as SVD-based LSI [6] and its extension [7],
I using the EM algorithm [8], Latent Dirichlet Allocation [3]
its extension [9] to model the correlation among topics. The

model is a Bayesian extension of a mixture of unigram mod-
here a vector of topic mixture weights θ is drawn from a prior

chlet distribution:

f(θ; α) ∝
KY

k=1

θαk−1
k (1)

re α = {α1, ..., αK} represents the prior observation count of
K latent topics and αk > 0. As a “bag-of-word” generative
el, the LDA model assigns probability to a document wn
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Figure 1: Graphical representation of Latent Dirichlet Allocation.

w1w2...wn as follows:

Pr(wn
1 ) =

Z
θ

 
nY

i=1

KX
k=1

βwik · θk

!
f(θ; α)dθ (2)

where βwik denotes the probability of a word wi given the k-th
latent topic. Figure 1 shows the document generation process us-
ing the graphical model representation and the circles in the graph
represent the latent variables in the model. Optimizing the exact
likelihood is computationally intractable. One alternative is to op-
timize the lower-bound of the log likelihood which can be derived
using the Jensen’s inequality: log

P
i qi · fi

qi
≥ P

i qi · log fi
qi

=

Eq[log
f(.)
q(.)

] where
P

i qi = 1. Therefore, the lower bound of the

log likelihood has the following form:

Q(Λ, Γ) = Eq[log
f(θ, wn

1 , zn
1 ; Λ)

q(θ, zn
1 ; Γ)

] (3)

where q(θ, zn
1 ) is an approximate posterior distribution over all the

latent variables given an observed document. In Variational Bayes
inference [10], the distribution is factorizable and parameterized
by Γ:

q(θ, zn
1 ; Γ) = q(θ; {γk}) ·

nY
i=1

q(zi) (4)

where q(θ; {γk}) is a Dirichlet distribution over topic mixture
weights parameterized by the “pseudo” topic counts {γk}, and
{q(zi)} is a set of multinomial distributions over topic indices.
Optimizing the auxiliary function Q(.) can be performed using
the VB-EM algorithm. The E-step determines the parameters Γ of
variational posteriors q(.) and the M-step uses q(.) to re-weight
the observations to estimate the model parameters Λ. We only
show the results of the parameter estimations of a single document.
Complete derivations can be found in [3].

E-Step:

γk = αk +
nX

i=1

q(zi = k) (5)

q(zi = k) ∝ βwik · eEq [log θk ]
(6)

where Eq[log θk] = digamma(γk) − digamma(
PK

k=1 γk).
Eqn 5 and Eqn 6 are applied iteratively until convergence.

M-Step:

βvk ∝
nX

i=1

q(zi = k)δ(wi, v) (7)
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re δ(.) is the Kronecker Delta function. Parameters of
Dirichlet prior {αk} can be determined using the Newton-
hson algorithm or gradient ascent procedure.

Estimating LDA-adapted marginals

applied our idea proposed in [4], but in the context of estimat-
a “global” LDA-adapted marginal of the test domain. We first
ed the automatic transcription as a single “document”. Then
pplied Variational Bayes inference (Eqn 5, 6) to estimate the

ational Dirichlet posterior over the topic mixture weights. We
puted the LDA-adapted marginal as follows:

Prlda(w) =

Z
θ

KX
k=1

βwk · θk · q(θ)dθ (8)

=

KX
k=1

βwk · Eq[θk] (9)

where Eq[θk] =
γkPK

k=1 γk

(k = 1...K) (10)

3. LM adaptation approach
goal of LM adaptation using dynamic marginals [1] is to find
dapted LM Pra(w|h) such that the KL divergence between
(w|h) and the background LM Prbg(w|h) is minimized sub-
to the marginalization constraints for each word w in the vo-
lary:

X
h

Pra(w|h) · Pra(h) = Prlda(w) ∀w (11)

constraint optimization problem has close connection to the
imum entropy approach [11]. It turns out that the form of the
ted model is a rescaled version of the background LM:

Pra(w|h) =
α(w) · Prbg(w|h)

Z(h)
(12)

re Z(h) is a normalization term to guarantee that the proba-
y sums to unity. α(w) is a scaling factor which is commonly
oximated as follows:

α(w) ≈
„

Pra(w)

Prbg(w)

«β

(13)

re β is a tuning factor between 0 and 1. In our reported exper-
ts, we set β equal to 0.5. We employed the same strategy pro-
d in [1] to compute the normalization factor Z(h) efficiently.
idea is to further impose a constraint that the total probability
e observed transition (h,w) in the background training corpus
nserved after LM adaptation:

X
:(h,w)

Pra(w|h) =
X

w:(h,w)

Prbg(w|h) = Mass(h)

re the summation is taken only on the observed history and
d pair (h,w) in the training set. Given that our background
has a standard backoff structure plus the above constraint, the



adapted LM has the following recursive backoff formula:

Pra(w|h) =

(
α(w)
z0(h)

· Prbg(w|h) if (h,w) exists

bo(h) · Pra(w|ĥ) otherwise

where z0(h) =

P
w:(h,w) α(w) · Prbg(w|h)

Mass(h)

and bo(h) =
1 − Mass(h)

1 −Pw:(h,w) Pra(w|ĥ)

bo(h) denotes the backoff weight for context h to ensure that

Pra(w|h) sums to unity. ĥ denotes the reduced word history of
h. The intuition behind the factor z0(h) is to perform “normal-
ization” similar to Eqn 12, but the summation is only over the ob-
served alternative words with the same word history h in the LM.
For incremental LM adaptation, we can modify the above formula
by replacing the background model with the previously adapted
model. For example, the alpha computation can be modified as
follows:

α(t)(w) ≈
 

Pr
(t)
a (w)

Pr
(t−1)
a (w)

!β

(14)

where t denotes t-th online adaptation and Pr
(t=0)
a (w) denotes the

background unigram distribution. We did not evaluate the incre-
mental LM adaptation approach on recognition experiments in this
paper. Our preliminary results showed that it brought significant
reduction in word perplexity. The reported results are only based
on the batch-mode LM adaptation.

4. Experimental setup
We evaluated the LM adaptation approach on the ISL-RT04
Mandarin Broadcast News evaluation system [12] using the
JANUS speech recognition toolkit. The system employs context-
dependent Initial-Final acoustic model. We trained the acous-
tic models using 27 hours of the Mandarin HUB4 1997 training
set and 69 hours of the TDT4 Mandarin data. We used the 42-
dimension features after Linear Discriminant Analysis projected
from a window of MFCC features for the front-end processing.
The system employed a two-pass decoding strategy using speaker-
independent and speaker-adaptive acoustic models for the first-
pass and the second-pass decoding respectively. In the second-pass
decoding, we applied the state-of-the-art acoustic adaptations (Vo-
cal Tract Length Normalization (VTLN), Feature Space Adapta-
tion (FSA), and Maximum Likelihood Linear Regression (MLLR).
The vocabulary size is 108K words. Performance metrics are the
word perplexity and the character error rates (CER) evaluated on
the RT04 test set containing three episodes: CCTV, RFA and NT-
DTV. We trained the background 4-gram LM using the modified
Kneser-Ney smoothing scheme using the SRI LM toolkit [13]. We
trained the LDA model with 200 topics which was found optimal
from our previous experience. The LM adaptation procedure is to
first perform first-pass decoding on the test audios to obtain the
automatic transcription. Treating the automatic transcription as
a single “document”, we applied the Variational Bayes inference
described in Section 2.1 to estimate the LDA-adapted marginals
for each test episode. We applied the LM adaptation technique
described in Section 3 on the background LM and performed the
second-pass decoding using the adapted LM of each episode. We
compared adaptation performance using LDA-adapted marginals
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re 2: OOV rates using un-adapted and LDA-adapted
inals.

LM (13M) CCTV RFA NTDTV
BG LM 748 3655 1718

+word-based 655 3718 1584

+LDA 673 3663 1638

+LDA (supervised) 613 2589 1518

e 1: Perplexity (PPL) on the RT04 test set with LM trained on
all corpus.

word-adapted marginals which are estimated using smoothed
ive word frequency with Good-Turing discounting scheme.

Out-Of-Vocabulary rate analysis

way to measure the quality of the LDA-adapted marginals
analyze the Out-Of-Vocabulary (OOV) rate with respect to

rent vocabulary sizes. Figure 2 shows the OOV rates of the
V test episode. Ideally, we want a sharp drop of OOV rates

n the number of vocabularies is increased. We noticed that the
-adapted marginal gives a lower OOV rate compared to the

dapted background unigram model, showing that the LDA-
ted marginal is more matched to the test data than the un-
ted one. We observed similar trends on the other two test

odes. The figure also shows the “oracle” OOV rate when we
the reference transcription to adapt the LSA model for com-

son purpose.

LM training with a small corpus

rst evaluated the LM adaptation approach using a small train-
corpus which comprises 13M words of Xinhua News 2002

the Mandarin Gigaword corpus to verify the correctness of
implementation and to simulate a scenario that only small
unt of training data is available. We trained the LDA model
g the same training corpus. Table 1 shows the word perplexity
lts. We achieved perplexity reduction with unsupervised LM
tation using LDA-adapted marginals. One point worths notic-
s that the perplexity number depends on the Chinese text seg-
tation which is determined by the vocabulary to segment the
We used the 108k vocabulary for text segmentation for the re-

ed experiment. We found that there is a substantial drop in per-
ity when the text is segmented with a 63k vocabulary. Table 2



LM (13M) CCTV RFA NTDTV Overall
BG LM 15.8% 40.1 22.0 25.3

+word-based 16.0 40.9 22.1 25.7

+LDA 15.1 39.7 21.5 24.8

+LDA (supervised) 14.7 38.8 20.7 24.1

Table 2: Character Error Rates (%) on the RT04 test set after the
2nd-pass decoding with LM trained on a small corpus.

LM (600M) CCTV RFA NTDTV
BG LM 473 1159 839

+LDA 405 1086 778

+LDA (supervised) 385 875 738

Table 3: Perplexity (PPL) on the RT04 test set with LM trained on
a large corpus.

shows the second-pass recognition results. We found that unsu-
pervised LM adaptation using LDA-adapted marginals gives 0.5%
absolute reduction on the overall character error rates compared
to the un-adapted background LM. We observed that the recogni-
tion results are comparable when we computed the exact normal-
ization term Z(h) in Eqn 12 which is computationally expensive.
The substantial reduction in computation makes the approach fea-
sible in large scale application. The supervised LM adaptation
reduces the absolute overall character error rates by 1.2% which
serves as the upper-bound recognition performance. As we ex-
pected, there is a degradation in recognition performance for the
word-adapted marginals compared to the un-adapted background
LM. As mentioned earlier, the result may be explained by the hy-
pothesis that the effect of recognition errors are reinforced after
LM adaptation. On the other hand, the LSA-adapted marginals
may provide smoothing effect on the recognition errors. The in-
tuition is: each hypothesized word is first projected into the latent
topic space where each word “votes” fractionally on how likely the
topics are (Eqn 6). Then the “votes” of the words are smoothed by
averaging the posterior counts of the topics (Eqn 10). Moreover,
estimation in the low dimensional latent topic space is more robust
than in the high dimensional vocabulary space due to data sparse-
ness.

4.3. LM training with a large corpus

We evaluated the LM adaptation approach on the background LM
trained on a large corpus with 600M characters. We trained the
LDA model with the full Mandarin Gigaword corpus with over 1M
documents. To reduce computation in the LDA training, we used
the LDA model from the previous experiment in Section 4.2 as an
initial model and applied few training iterations over the whole
corpus. Table 3 shows that our approach on unsupervised LM
adaptation achieves relative perplexity reduction between 6% –
14% depending on the test episodes. Table 4 shows that our ap-
proach yields 0.5% absolute reduction in character error rates com-

LM (600M) CCTV RFA NTDTV Overall
BG LM 13.1% 35.7 17.5 21.5

+LDA 12.7 34.4 17.7 21.0

+LDA (supervised) 12.3 34.1 17.1 20.6

Table 4: Character Error Rates (%) on the RT04 test set after the
2nd-pass decoding with LM trained on a large corpus.
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d to the un-adapted baseline. With the supervised LM adap-
n, we observed an additional 0.4% absolute reduction in char-
r error rates compared to the unsupervised setting.

5. Conclusions and Future Works
proposed an unsupervised LM adaptation framework by inte-
ing the LDA-adapted marginals into the background LM using
back-Leibler divergence criterion. We successfully reduced
word perplexity and character error rates on the RT04 Man-
n Broadcast News test set after applying unsupervised LM
tation. The LDA-adapted marginals perform better than the

d-adapted marginals estimated using relative word frequency.
re directions include exploring LM adaptation for statistical
hine translation (SMT) on the text and automatic transcrip-
, and incremental LM adaptation for ASR and SMT using the
osed approach.
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