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Abstract

The analysis of spoken language is widely considered to be a more challenging task than the
analysis of written text. All of the difficulties of written language can generally be found in
spoken language as well. Parsing spontaneous speech must, however, also deal with problems
such as speech disfluencies, the looser notion of grammaticality, and the lack of clearly marked
sentence boundaries. The contamination of the input with errors of a speech recognizer can further
exacerbate these problems. Most natural language parsing algorithms are designed to analyze
“clean” grammatical input. Because they reject any input which is found to be ungrammatical
in even the slightest way, such parsers are unsuitable for parsing spontaneous speech, where
completely grammatical input is the exception more than the rule.

This thesis describes GLR*, a parsing system based on Tomita’s Generalized LR parsing algorithm,
that was designed to be robust to two particular types of extra-grammaticality: noise in the input,
and limited grammar coverage. GLR* attempts to overcome these forms of extra-grammaticality
by ignoring the unparsable words and fragments and conducting a search for the maximal subset
of the original input that is covered by the grammar. The parser is coupled with a beam search
heuristic, that limits the combinations of skipped words considered by the parser, and ensures that
the parser will operate within feasible time and space bounds.

The developed parsing system includes several tools designed to address the difficulties of parsing
spontaneous speech. To cope with high levels of ambiguity, we developed a statistical disambigua-
tion module, in which probabilities are attached directly to the actions in the LR parsing table. The
parser must also determine the “best” parse from among the different parsable subsets of an input.
We thus designed a general framework for combining a collection of parse evaluation measures
into an integrated heuristic for evaluating and ranking the parses produced by the GLR* parser.
This framework was applied to a set of four parse scoring measures developed for the JANUS
scheduling domain and the ATIS domain. We added a parse quality heuristic, that allows the
parser to self-judge the quality of the parse chosen as best, and to detect cases in which important
information is likely to have been skipped.

To demonstrate its suitability to parsing spontaneous speech, the GLR* parser was integrated into
the JANUS speech translation system. Our evaluations on both transcribed and speech recognized
input have indicated that the version of the system that uses GLR* produces between 15% and 30%
more acceptable translations, than a corresponding version that uses the original non-robust GLR
parser. We also developed a version of GLR* that is suitable to parsing word lattices produced by
the speech recognizer, and investigated how lattice parsing can potentially overcome errors of the
speech recognizer and further improve end-to-end performance of the speech translation system.
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Chapter 1

Introduction and Overview

1.1. Introduction

The analysis of spoken language is widely considered to be a more challenging task than the
analysis of written text. All of the difficulties of written language (such as ambiguity) can generally
be found in spoken language as well. However beyond these difficulties, there are additional
problems that are specific to the nature of spoken language in general, and spontaneous speech in
particular. The major additional issues that come to play in parsing spontaneous speech are speech
disfluencies, the looser notion of grammaticality that is characteristic of spoken language, and the
lack of clearly marked sentence boundaries. The contamination of the input with errors of a speech
recognizer can further exacerbate these problems.

Most natural language parsing algorithms are designed to analyze “clean” grammatical input.
By the definition of their recognition process, these algorithms are designed to detect ungrammatical
input at the earliest possible opportunity, and to reject any input that is found to be ungrammatical
in even the slightest way. This property, which requires the parser to make a complete and absolute
distinction between grammatical and ungrammatical input, makes such parsers fragile and of little
value in many practical applications. Such parsers are thus unsuitable for parsing spontaneous
speech, where completely grammatical input is the exception more than the rule.

This thesis describes GLR*, a parsing system based on Tomita’s Generalized LR parsing
algorithm, that was designed to be robust to two particular types of extra-grammaticality: noise
in the input, and limited grammar coverage. GLR* attempts to overcome these forms of extra-
grammaticality by ignoring the unparsable words and fragments and conducting a search for the
maximal subset of the original input that is covered by the grammar.

Because the GLR* parsing algorithm is an enhancement to the standard GLR context-free
parsing algorithm, grammars, lexicons and other tools developed for the standard GLR parser
can be used without modification. GLR* uses the standard LR parsing tables that are compiled in
advance from the grammar. It inherits the benefits of GLR in terms of ease of grammar development,
and, to a large extent, efficiency properties of the parser itself. In the case that an input sentence
is completely grammatical, GLR* will normally return the exact same parse as the standard GLR
parser.

Although it should prove to be useful for other practical applications as well, GLR* was
designed to be particularly suitable for parsing spontaneous speech. Grammars developed for
spontaneous speech can concentrate on describing the structure of the meaningful clauses and
sentences that are embedded in the spoken utterance. The GLR* parsing architecture can facilitate
the extraction of these meaningful clauses from the utterance, while disregarding the surrounding
disfluencies.

7



1.1.1. Extra-grammaticalities in Spontaneous Speech
Disfluencies in Spontaneous Speech

Because spontaneous speech is an “on-line” form of communication, it contains many kinds of
disfluencies. The typical forms of disfluencies that can be found in spontaneous speech are false be-
ginnings, repeated words, stutters, and various filled pauses (such as “ah”,“um” etc.). Disfluencies
are speaker dependent, and vary greatly from one speaker to another. However, the parser should
be able to disregard most such disfluencies, regardless of the speaker. Here are some examples,
taken from transcriptions of spontaneous conversations in the scheduling domain, that demonstrate
these phenomena. For each example we show the original utterance along with a “clean” version
of the utterance, that contains just the meaningful content and omits the disfluencies. The “clean”
versions correspond to what we would like the parser to detect and successfully parse.

� False beginning, filled pauses:

– Original input: um okay then yeah Monday at two is fine.

– Content input: Monday at two is fine.

� Repetition, filled pauses:

– Original input: uh I I need to meet with you next week.

– Content input: I need to meet with you next week.

� Stutter, false start, filled pauses:

– Original input: October the first I have a meeting on the uh I
have a meeting at ten to eleven in the morning.

– Content input: October first I have a meeting at ten to eleven
in the morning.

Ungrammaticality

One source of ungrammaticality is the limited coverage of the grammar. Any pre-written grammar
is bound to fail in covering the wide range of spoken language used by different speakers, even
when restricted to a specific domain. Utterances that are grammatical in the large sense may fail to
be covered by the grammar in their entirety. The best one can hope for is for the grammar to cover
a wide variety of expected grammatical constructs, and thus enable the parser to succeed in parsing
the core part of the utterance, and ignore the rest as noise. Here are some examples, once again
taken from recorded dialogs in the scheduling domain. Each example is an utterance that fails to
be completely parsable by a recent version of our grammar. Along with each utterance, we present
the most complete subset of the utterance that is parsable by the grammar.

� Unrecognized proper noun:

– Original input: I’m sorry Lynn.

– Parsable subset : I’m sorry.

8



� Unrecognized compound noun:

– Original input: I’m busy during those lunch hours from one to
four on the twenty seventh.

– Parsable subset : I’m busy during lunch from one to four on the
twenty seventh.

� Unrecognized complex construct:

– Original input: I just realized that I’m too busy on the first.

– Parsable subset : I’m too busy on the first.

� Unrecognized beginning:

– Original input: Listen, how about Thursday December second.

– Parsable subset : How about Thursday December second.

� Unrecognized verb form:

– Original input: I can’t do lunch with you but we can meet later.

– Parsable subset : I can’t lunch with you but we can meet later.

Another source of ungrammaticality arises due to the nature of the spoken language. People
seem to adhere less to rules of the grammar when they speak (as opposed to when they write). Even
so, the clauses and sentences that comprise the meaningful content of spoken utterances are for
the most part structurally well formed, and can thus be considered “grammatical”. The grammars
that are developed for parsing spontaneous speech can describe the structure of these meaningful
parts of the utterance. In cases where parts of the utterance deviate from what would be considered
grammatical according to the grammar, the most we can expect of a parser is to extract and parse
the parts of the utterance that are grammatical.

Dealing with Errors of the Speech Recognizer

Even though the quality of speech recognition systems has improved substantially over the last
several years, a speech recognizer that handles spontaneous speech will frequently misrecognize
words of the input utterance. Grammar based parsing is very sensitive to such misrecognitions.
However, the speech recognition process produces multiple hypotheses for a given speech utterance.
It is often the case that a highly accurate hypothesis exists, even though it is not the one considered
best by the recognizer. Since a more accurate hypothesis is likely to be more grammatical and
thus produce a better parse, we can hopefully use the parser to detect a hypothesis with fewer
recognition errors. GLR* is suitable for this purpose, since it can parse hypotheses even if they
are not completely grammatical. In Chapter 7 of the thesis, we investigate how this can be done
efficiently using a lattice parsing version of GLR*.
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1.2. Research Goals
This thesis was primarily motivated by the problem of parsing spontaneously spoken language. As
illustrated in the examples of the previous section, spontaneous speech is often ill-formed. The
spontaneous “on-line” nature of this type of input often results in disfluencies that for the most part
can be regarded as noise that contaminates the meaningful segments of the utterance. Furthermore,
the expression forms used by speakers are likely to exceed the language coverage of the grammar.
However, we make the observation that the “core” parts of spoken utterances can be grammatically
analyzed, and that in most cases, this analysis can reflect the essential meaning being conveyed.
We therefore set out to demonstrate that a parser that can focus on the maximal grammatically
analyzable subset(s) of a spoken input utterance, can substantially reduce the problems of noise
contamination and limited grammar coverage, and that this results in a substantial improvement in
the parser’s ability to correctly analyze spontaneously spoken language.

We chose to base the developed parsing architecture on a standard efficient natural language
parser, so that issues of robustness will be separated as much as possible from the development of
the grammars, lexicons and other linguistic tools, and so that existing tools and grammars will be
usable “as is”. The GLR parsing system was chosen as an appropriate parsing architecture, since it
is an efficient well developed architecture that has been in extensive use for large practical machine
translation applications in our local research environment at CMU.

The major research goals set for the thesis were the following:

1. To develop an efficient robust parsing algorithm, that can find and parse the maximal
grammatical subset of a given input utterance. Furthermore, to couple the parsing algorithm
with heuristics for search control, that will allow it to perform within feasible time and
space bounds.

2. To develop a statistical disambiguation module, that can effectively assist in selecting the
correct analysis from the set of ambiguous analyses produced by the parser for a particular
parsed input. An additional sub-goal was to develop a method that will allow the statistical
scores assigned by the disambiguation module to be used in the evaluation of different
parsable subsets of the input utterance, so that the “best” parse found by the parser can be
selected.

3. To develop a general framework for parse evaluation, that can evaluate and rank sets
of competing parse analyses that correspond to different grammatical subsets of the input,
and which is capable of combining a variety of knowledge sources and heuristic evaluation
measures. Additionally, to develop a set of parse evaluation measures that are suitable for
evaluating the parses produced by the GLR* parser in the domain in which we have applied
it - spontaneously spoken scheduling dialogs. Furthermore, in some cases, GLR* will have
to skip input segments with crucial information. Thus, parsability alone is insufficient for
ensuring that the analysis is meaningful. We therefore set out to develop a parse quality
heuristic, that will allow the parser to self-judge the quality of the “best” analysis found,
using the developed parse evaluation measures.

4. To investigate the effectiveness and practical feasibility of the developed GLR* parser
in parsing spontaneous speech input, by integrating it into JANUS, a large speech-to-speech-
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translation project, and by conducting extensive evaluations of the end-to-end performance
of the system using GLR*.

5. To construct a version of the robust GLR* parser that is capable of parsing lattices
produced by the speech recognizer, to integrate it into a lattice processing version of
the JANUS system, and to investigate the ability of this architecture to overcome speech
recognition errors and to improve the end-to-end performance of the system.

1.3. Thesis Summary

1.3.1. Foundation: GLR Parsing

The GLR* parsing algorithm developed in this thesis is based on Tomita’s Generalized LR (GLR)
parsing algorithm. The underlying GLR parsing algorithm and the foundations of the LR parsing
method are described in Chapter 2 of the thesis.

Principles of LR Parsing

The GLR parsing algorithm is a parsing framework that evolved out of the LR parsing techniques
that were originally developed for parsing programming languages in the late 1960s and early
1970s. LR parsers parse the input bottom-up, scanning it from left to right, and producing a
rightmost derivation. They are deterministic and extremely efficient, being driven by a table of
parsing actions that is pre-compiled from the grammar.

The common core of all of the LR parser variants is a basic Shift-Reduce parser, which is
fundamentally no more than a finite-state pushdown automaton (PDA). The parser scans a given
input left to right, word by word. At each step, the LR parser may either shift the next input word
onto the stack, reduce the current stack according to a grammar rule, accept the input, or reject it.
An action table that is pre-compiled from the grammar guides the LR parser when parsing an input.
The action table specifies the next action that the parser must take, as a function of its current state
and the next word of the input.

The GLR Parsing Algorithm

Tomita’s Generalized LR parsing algorithm extended the original LR parsing algorithm to the case
of non-LR languages, where the parsing tables contain entries with multiple parsing actions. The
algorithm deterministically simulates the non-determinism introduced by the conflicting actions
in the parsing table by efficiently pursuing in a pseudo-parallel fashion all possible actions. The
primary tool for performing this simulation efficiently is the use of a Graph Structured Stack (GSS).
Two additional techniques, local ambiguity packing and shared parse forests, are used in order to
efficiently represent the various parse trees of ambiguous sentences when they are parsed.

The Unification-based GLR Parsing System

The Generalized LR Parser/Compiler is a unification based practical natural language system
that was designed based on the GLR parsing algorithm at the Center for Machine Translation at
Carnegie Mellon University. The system supports grammatical specification in an LFG framework,
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that consists of context-free grammar rules augmented with feature bundles that are associated with
the non-terminals of the rules. Feature structure computation is, for the most part, specified and
implemented via unification operations. This allows the grammar to constrain the applicability
of context-free rules. A reduction by a context-free rule succeeds only if the associated feature
structure unification is successful as well. The Generalized LR Parser/Compiler is implemented
in Common Lisp, and has been used as the analysis component of a wide range of projects at the
Center for Machine Translation at CMU in the course of the last several years.

1.3.2. The GLR* Parsing Algorithm

Chapter 3 of the thesis describes the GLR* parsing algorithm, analyzes its computational com-
plexity and evaluates its practical performance. It also describes the search control heuristics that
were developed to ensure that the algorithm performs within feasible time and space bounds, and
evaluates the effectiveness of these heuristics.

The GLR* parsing algorithm was designed to be robust to two particular types of extra-
grammaticality: noise in the input, and limited grammar coverage. It attempts to overcome these
forms of extra-grammaticality by ignoring the unparsable words and fragments and conducting a
search for the maximal subset of the original input that is covered by the grammar.

The Unrestricted GLR* Parsing Algorithm

GLR* accommodates skipping words of the input string by allowing shift operations to be per-
formed from inactive state nodes in the GSS. Shifting an input symbol from an inactive state is
equivalent to skipping the words of the input that were encountered after the parser reached the
inactive state and prior to the current word that is being shifted. Since the parser is LR(0), previous
reduce operations remain valid even when words further along in the input are skipped, since the
reductions do not depend on any lookahead.

Due to the word skipping behavior of the GLR* parser, local ambiguities occur on a much more
frequent basis than before. In many cases, a portion of the input sentence may be reduced to a
non-terminal symbol in many different ways, when considering different subsets of the input that
may be skipped. Since the ultimate goal of the GLR* parser is to produce maximal (or close to
maximal) parses, the process of local ambiguity packing can be used to discard partial parses that
are not likely to lead to the desired maximal parse. Local ambiguities that differ in their coverage
of an input segment can be compared, and when the word coverage of one strictly subsumes that
of another, the subsumed ambiguity can be discarded.

Complexity Analysis and Performance Evaluation

The complexity analysis of the unrestricted GLR* algorithm proves that the asymptotic time com-
plexity of the algorithm is ��	�
��� 1 � , where 
 is the length of the input, and � is the length of
the longest grammar rule. This complexity bound is similar to that of the original GLR parsing
algorithm. This result may seem surprising, but we provide several explanations for it. With
respect to the grammar size, GLR has a non-polynomially-bound runtime, and once again, GLR*
has a similar bound. These complexity results thus do not provide much insight into the actual
differences in runtime behavior between GLR and GLR* on common practical grammars. We
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therefore conducted experiments to evaluate the practical performance of the unrestricted GLR*
algorithm.

Time and space performance of the unrestricted GLR* parser was evaluated on a benchmark
setting from the JANUS speech-to-speech translation project. We used a version of the English
analysis grammar for the scheduling domain. The benchmark consists of 552 English sentences,
with sentence length ranging from 2 to 15 words, and an average length of about 6 words per
sentence. The evaluation results show that the time and space behavior of the unrestricted GLR*
parser diverges very rapidly from that of GLR, and becomes infeasible for even sentences of
medium length. Whereas GLR time and space requirements increase almost linearly as a function
of the sentence length, the performance of unrestricted GLR* appears to be similar to that predicted
by the worst case complexity analysis. This suggests that effective search heuristics are required
to ensure that the algorithm performs within feasible time and space bounds.

The Search Control Heuristics

Since the purpose of GLR* is to find only maximal (or close to maximal) parsable subsets of the
input, we can drastically reduce the amount of search by limiting the amount of word skipping that
is considered by the parser. We developed and experimented with two heuristic search techniques.
With the k-word Skip Limit Heuristic, the parser is restricted to skip no more than � consecutive
input words at any point in the parsing process. With the Beam Search Heuristic, the parser is
restricted to pursue a “beam” of a fixed size � of parsing actions, which are selected according
to a criterion that locally minimizes the number of words skipped. There exists a direct tradeoff
between the amount of search (and word skipping) that the parser is allowed to pursue and the time
and space performance of the parser itself. The goal is to determine the smallest possible setting of
the control parameters that allows the parser to find the desired parses in an overwhelming majority
of cases.

We conducted empirical evaluations of parser behavior with different settings of the search
control parameters, using the same benchmark setting on which the unrestricted GLR* parser was
evaluated. The results show that time and space requirements of GLR* increase as the control
parameters are set to higher values. This increase however is gradual, and in the case of the beam
parameter, even with considerably high settings, parser performance remains in the feasible range,
and does not approach the time and space requirements experienced when running the unrestricted
version of GLR*. A comparison of the performance figures of the two heuristic control mechanisms
revealed a clear advantage of using the beam search, versus the simpler skip word limit heuristic.

1.3.3. Statistical Disambiguation

The abundance of parse ambiguities for a given input is greatly exacerbated in the case of the GLR*
parser, due to the fact that the parser produces analyses that correspond to many different maximal
(or close to maximal) parsable subsets of the original input. It is therefore imperative that the
the parser be augmented with a statistical disambiguation module, which can assist the parser in
selecting among the ambiguities of a particular parsable input subset. Chapter 4 describes a newly
developed statistical disambiguation module, designed to augment the unification-based versions
of both the GLR and GLR* parsing systems.
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The Statistical Framework

Our probabilistic model is based on a similar model developed by Carroll, where probabilities are
associated directly with the actions of the parser, as they are defined in the pre-compiled parsing
table. Because the state of the LR parser partially reflects the left and right context of the parse
being constructed, modeling the probabilities at this level has the potential of capturing contextual
preferences that cannot be captured by probabilistic context-free grammars. Because we use a
finite-state probabilistic model, the action probabilities do not depend on the given input sentence.
The relative probabilities of the input words at various states is implicitly represented by the action
probabilities.

Training the Probabilities

The correctness of a parse result in our parsing system is determined according to the feature
structure associated with the parse and not the parse tree itself. We are therefore interested in parse
disambiguation at the feature structure level. To allow adequate training of the statistical model,
we collect a corpus of sentences and their correct feature structures. Within the JANUS project,
a large collection of sentences and their correct feature structures had been already constructed
for development and evaluation purposes, and was thus directly available for training the proba-
bilities of the statistical model. For other domains (including ATIS), we developed an interactive
disambiguation procedure for efficiently constructing a corpus of disambiguated feature structures.

Once we have a corpus of input sentences and their disambiguated feature structures, we can
train the finite-state probabilistic model that corresponds to the LR parsing table. In order for this
to be done, a method was developed by which a correct feature structure of a parsed sentence can
be converted back into the sequence of transitions the parser took in the process of creating the
correct parse. Using this method, we process the training corpus and accumulate counters that
keep track of how many times each particular transition of the LR finite-state machine was taken in
the course of correctly parsing all the sentences in the training corpus. After processing the entire
training corpus and obtaining the counter totals, the counter values are treated as action frequencies
and converted into probabilities by a process of normalization. A smoothing technique is applied
to compensate for transitions that did not occur in the training data.

Runtime Parse Disambiguation

Statistical disambiguation for the unification-based GLR parsing system is performed as a post-
process, after the entire parse forest has been constructed by the parser. At runtime, the statistical
model is used to score the alternative parse analyses that were produced by the parser. Once
computed, these scores can be used for disambiguation, by unpacking the analysis that received
the best probabilistic score from the parse forest.

Due to ambiguity packing, the set of alternative analyses and their corresponding parse trees
are packed in the parse forest. For packed nodes, a statistical score is computed for each of the
alternative sub-analyses that are packed into the node. The packed node itself is then assigned the
“best” of these scores, by taking a maximum. This score will then be used to compute the scores
of any parent nodes in the forest. According to this scheme, the score that is attached to the root
node of the forest should reflect the score of the best analysis that is packed in it. Because the score
computation of an internal node in the parse forest requires the prior computation of the scores of
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the node’s children, parse node scoring is performed in a “bottom-up” fashion. Because of some
effects of packing and unification, the score assigned to a parse node is not guaranteed to be the
actual true probability of the best sub-analysis rooted at the node. However, the score is always
a close over-estimate of this probability. It may thus be viewed as a heuristic for determining the
actual best scoring ambiguity packed in the forest.

Once the preliminary task of scoring all the nodes in the parse forest is complete, the actual
parse disambiguation can be performed by a process of unpacking the best scoring analysis from the
forest. While the node scoring was done in a “bottom-up” fashion, unpacking is done “top-down”,
starting from the node at the root of the forest. Unpacking is done by going down the parse tree,
and selecting one of the alternative packed ambiguities at each packed parse node.

Evaluation

We evaluated the statistical disambiguation module for two large practical grammars. The first is
a syntactic grammar developed for the ATIS domain. The second grammar is the Spanish analysis
grammar developed for the JANUS/Enthusiast project. It is a predominantly semantic grammar
(with some syntactic structural rules) for the appointment scheduling domain.

To train the probabilities for the ATIS grammar, we used the interactive training procedure,
where for each sentence, the user is required to select the correct analysis (feature structure)
from the set of analyses produced by the parser. Because this task is time consuming, training
was conducted on a set of only 500 sentences, from which a smoothed probability table was
constructed. We then tested the disambiguation module on an unseen set of 119 sentences. 67
out of the 119 test sentences (56.3%) are ambiguous. In 52 out of these 67 ambiguous sentences
(77.6%), one of the analyses produced by the parser is the correct analysis. The disambiguation
module selected the correct analysis in 39 out of the 52 sentences, resulting in a success rate of
75.0%. Without statistical disambiguation, the parser is capable of selecting the correct parse in 30
of the 52 sentences (57.7%), by simply choosing the first analysis out of the set of analyses returned
by the parse. This is a good result, when we consider the fact that the size of the training set was
inadequately small (the training observed a mere 4.4% of the possible actions, and no actions at all
were observed for 60% of the states).

For the Spanish analysis grammar, the probabilities for statistical disambiguation were trained
on a corpus of “target” (correct) ILTs of 1687 sentences. We then evaluated the performance of
the statistical disambiguation module on a unseen test set of 769 sentences. 524 out of the 769
sentences (68.1%) are parsable with one of the analyses returned by the parser being completely
correct. 213 of these 524 sentences (40.6%) are ambiguous. The statistical disambiguation module
successfully chose the correct parse in 140 out of the 213 sentences, thus resulting in a success
rate of 65.7%. For comparison, we applied a Minimal Attachment disambiguation procedure to
the same test set. With Minimal Attachment, the correct parse was chosen in only 79 out of the
213 sentences, resulting in a success rate of 37.1%. Thus, the statistical disambiguation method
outperforms the Minimal Attachment method in this case by about 29%. Although the size of the
corpus that was available for training for the Spanish grammar was about three times larger than
that used for the ATIS grammar, we still observed and modeled only a small fraction of the actual
transitions allowed by the grammar. The training observed only 5.3% of all possible actions, and
for 59% of the states, no actions were observed.
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The statistical disambiguation results for both grammars demonstrate that even extremely small
amounts of correct training data can establish structural preferences for resolving the most fre-
quently occurring types of ambiguity. Thus, significant benefits can be gained from using the
statistical disambiguation module even when trained on relatively small amounts of data.

1.3.4. Parse Evaluation Heuristics

Chapter 5 describes an integrated framework that we have developed for the GLR* parser, that
allows different heuristic parse evaluation measures to be combined into a single evaluation func-
tion, by which sets of parse results can be scored, compared and ranked. The framework itself
is designed to be general, and independent of any particular grammar or domain to which it is
being applied. The framework allows different evaluation measures to be used for different tasks
and domains. Additional evaluation measures can be developed and added to the system. The
evaluation framework includes tools for optimizing the performance of the integrated evaluation
function on a given training corpus.

The utility of a parser such as GLR* obviously depends on the semantic coherency of the parse
results that it returns. Since the parser is designed to succeed in parsing almost any input, parsing
success by itself can no longer provide a likely guarantee of such coherency. We thus developed a
classification heuristic by which the parser tries to self-identify situations in which even the “best”
parse result is inadequate.

The Integrated Framework for Parse Evaluation

The integrated parse evaluation framework is a method for combining different evaluation measures
into a single evaluation function. Each of the available evaluation measures is called a score
function. A score function can reflect any property of either a parse candidate or the skipped (or
substituted) portions of the input that correspond to a parse candidate. We use linear combination
as the scheme for combining the individual score functions. With linear combination, each of the
individual scores are first scaled by a weight factor, and the results are then summed.

Selecting the weight assigned to each of the score functions allows us to intentionally enforce
the dominance of certain evaluation measures over others. To fine tune these weights, we developed
a semi-automatic training procedure, which attempts to find the optimal combination weights for a
given training corpus. The goal of the optimization procedure is to adjust the weights of the score
functions in a way that maximizes the number of sentences in the training corpus for which the
correct parse is assigned the best score. This is done by analyzing the set of sentences for which
the correct parse was not assigned the best score. These sentences are classified into error vectors,
which reflect which weights should be increased and which should be decreased. The optimization
procedure works iteratively. It is only semi-automatic, due to the fact that it consults with the user
before actually modifying the weights of the score functions, and proceeding to the next iteration.

The Parse Evaluation Score Functions

For both the JANUS scheduling domain and the ATIS grammar, we developed a set of four
evaluation measures: a penalty function for skipped words, a penalty function for substituted
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words, a penalty function for the fragmentation of the parse analysis, and a penalty function based
on the statistical score of the parse.

In its basic form, the penalty for skipping words assigns a penalty in the range of � 0 � 95 � 1 � 05 �
for each skipped word. This scheme assigns a slightly higher penalty to skipped words that appear
later in the input. This was designed to help us to deal with false starts and repeated words. This
simple scheme was further developed into one in which the penalty for skipping a word is a function
of the saliency of the word in the domain. To determine the saliency of our vocabulary words,
we compared their frequency of occurrence in transcribed domain text with the corresponding
frequency in “general” text.

For the ATIS domain, we attempted to deal with substitution errors of the speech recognizer
using a confusion table. Words that are common misrecognitions of other words are listed in the
table along with one or more words that are likely to be their corresponding correct word. When
working with a confusion table, whenever the GLR* parser encounters a possible substitution that
appears in the table, it attempts to continue with both the original input word and the possible
“correct” word(s). A word substitution should incur some penalty, since we would like to choose
an analysis that contains a substitution only in cases where the substitution resulted in a better
parse. We currently use a simple penalty scheme, where each substitution is given a penalty of 1 � 0.

In terms of their grammatical restrictness, our grammars for parsing spontaneous speech are
rather “loose”. The major negative consequence of this looseness is a significant increase in the
degree of ambiguity of the grammar. In particular, utterances that can be analyzed as a single
grammatical sentence, can often also be analyzed in various ways as collections of clauses and
fragments. Our experiments have indicated that, in most such cases, a less fragmented analysis is
more desirable. We thus developed a method for associating a numerical fragmentation value with
each parse. This fragmentation value is then used as a penalty score.

Our statistical disambiguation uses a finite-state model that assigns an actual probability to every
possible transition sequence. Thus, transition sequences that correspond to parses of different inputs
are directly comparable. This enables us to use the statistical score as a parse evaluation measure.
To enable parse probabilities to be used as an evaluation measure, we convert the probability into
a penalty score, such that more “common” parse trees receive a lower penalty.

The Parse Quality Heuristic

We developed a classification heuristic that is designed to try and identify situations in which even
the “best” parse result is inadequate. Our parse quality heuristic is designed to classify the parse
chosen as best by the parser into one of two categories: “Good” or “Bad”. The classification is
done by a judgement on the combined penalty score of the parse that was chosen as best. The parse
is classified as “Good” if the value of penalty score does not accede a threshold value. The value
of the threshold is relative to the length of the input utterance, since longer input utterances can be
expected to accommodate more word skipping, while still producing a good analysis.

Performance Evaluation

We evaluated the performance of the parse selection heuristics and the parse quality heuristic in
two different settings. The first setting was an unseen test set of 513 transcribed Spanish dialogs in
the scheduling domain, using the Spanish analysis grammar developed for the JANUS/Enthusiast
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project. The second setting is a unseen test set of 120 sentences in the ATIS domain, using the
ATIS syntactic grammar.

In the Spanish grammar evaluation, 500 out of the 513 sentences are parsable, and for 300 out
of the 500 parsable sentences, one of the parses produced by the parser completely matches its
target ILT. In 33 cases, the correct parse requires some word skipping. With the full set of parse
evaluation heuristics, 26 of the 33 cases (78.8%) were correct. A simple evaluation heuristic that
selects the maximal parsable subset (breaking ties randomly) finds the correct parse in 24 of the
33 cases (72.7%). 200 out of the 500 parsable test sentences do not produce a completely correct
ILT. 148 out of the 200 are sentences that require some amount of skipping in order to be parsed.
With the simple parse selection heuristic, the parser selects a parse that results in an acceptable
translation in 72 out of the 148 sentences. With the full set of heuristics, an acceptable translation
is produced in 78 out of the 148 cases. Additionally, we found that in only 6 additional cases there
exists an analysis that would produce an acceptable translation that was not selected by either of
the methods.

We also evaluated the parse quality heuristic for the Spanish grammar. 57 out of the 500 parsable
sentences are marked as “Bad” by the heuristic. None of the 57 sentences marked “Bad” have a
completely correct parse that matches the corresponding target ILT. For 47 out of the 57 sentences
marked “Bad” (82.4%), the selected parse produces a bad translation. Of the 443 sentences marked
“Good” by the parse quality heuristic, the selected parse for 274 of the sentences (61.9%) matches
its target ILT, and for 115 of the sentences (26.0%), the selected parse is not a complete match, but
produces an acceptable English translation. Thus, the translation accuracy success rate for parses
marked as “Good” by the parse quality heuristic is 87.9%.

The results for the ATIS evaluation were rather similar. 119 of the 120 test sentences were
parsable. The simple parse selection heuristic selects an acceptable parse for 69 out of the 119
parsable sentences (58.0%). The full parse selection heuristics select an acceptable parse in 4
additional cases, for a total of 73 out of 119 (61.3%). 23 out of the 119 parsed sentences are marked
as “Bad”. For 21 of these 23 sentences (91.3%), the selected parse is indeed bad. Also, in only 14
cases (14.6%) did the parse quality heuristic fail to mark a truely bad parse as “Bad”.

1.3.5. Parsing Spontaneous Speech using GLR*

Chapter 6 describes how the GLR* parser has been integrated into JANUS, a practical speech-
to-speech translation system, designed to facilitate communication between a pair of different
language speakers, attempting to schedule a meeting. We also evaluate the performance of GLR*
on speech recognized input in the ATIS domain.

Parsing Full Utterances with GLR*

In JANUS, the output of the speech recognizer is a textual hypothesis of the complete utterance,
and contains no explicit representation of the boundaries between the clauses and sentences of
which the utterance is composed. The analysis grammars developed for the scheduling domain
were constructed to primarily analyze clauses. Multi-clause utterances must therefore be broken
into clauses, in order to be properly parsed. We handle multi-clause utterances using a combination
of methods. First, the analysis grammars were extended with rules that allow the input utterance
to be analyzed as a concatenation of several clauses. However, for typical multi-clause utterances,
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there are many different possible ways of breaking the utterance into clauses that are analyzable by
the grammar. For long multi-clause utterances, the computational complexity of pursuing all such
possibilities results in infeasible parse times and memory requirements. We significantly reduce the
severity of this problem by using a pre-processor to break the utterance into smaller sub-utterances,
that may still contain a number of clauses. In addition, we developed a powerful set of heuristics,
including a statistical clause boundary predictor, for further constraining the breaking possibilities
that are considered by the parser.

JANUS Performance Evaluation

Evaluations were conducted on both the English and Spanish analysis grammars. We compared the
performance of the system incorporating GLR* with a version that uses the original GLR parser,
and with a version that uses the Phoenix parser. The results for both the Spanish and English are
rather similar, and we thus summarize here only the English results.

The test set consisted of 99 push-to-talk unseen utterances. The transcribed text was pre-broken
into clauses according to transcribed markings. This produced a set of 360 sub-utterances or clauses,
each of which was parsed separately. The top-best speech recognized hypotheses were pre-broken
using the two consecutive noise words criterion. This produced a set of 192 sub-utterances.

On transcribed input, GLR succeeds to parse 55.8% of the clauses, while GLR* succeeds in
parsing 95.0% of the clauses. This amounts to a gain of about 39% in the number of parsable
clauses. On the speech recognized input, GLR parses only 21.4% of the input sub-utterances, while
GLR* succeeds to parse 93.2%. In this case, the increase in parsable sub-utterances amounts to
almost 72%. On transcribed input, GLR* produced acceptable translations for 85.6% of the clauses,
compared with 54.2% for GLR. Thus, GLR* produces over 30% more acceptable translations. This
is also the case when only the parses marked “Good” by the parse quality heuristic of GLR* are
considered. The results on speech recognized input are rather similar. While GLR produced an
acceptable translation only 17.2% of the time, GLR* did so in 47.9% of the time. Once again, this
amounted to an increase of about 30.0% in the number of acceptable translations. Similar results
were achieved when only the parses marked “Good” by GLR* are considered.

We also evaluated the effectiveness of the parse quality heuristic. On transcribed data, 92.7% of
the parses marked “Good” by the parse quality heuristic produce acceptable translations. 10 out of
12 clauses marked by GLR* as “bad” (83.3%) result in a bad translation. On speech data, the effec-
tiveness of the parse quality heuristic is hindered by errors of the speech recognizer. Consequently,
parses marked as “Good” by the parse quality heuristic, produced acceptable translations for only
66.9% of the sub-utterances. However, when errors that are completely due to poor recognition are
considered acceptable, 96.2% of the clauses marked “Good” by the parse quality heuristic are in
fact acceptable. Parses marked “Bad” by the parse quality heuristic produced a bad translation in
93.5% of the time.

The performance of GLR* and Phoenix on this test set was quite similar. On both transcribed
and speech input, the percentage of utterances with acceptable translations using Phoenix was
slightly better than the corresponding figure when using GLR*. On transcribed input, GLR*
produces acceptable translations for 83.9% of the utterances, versus 85.5% for Phoenix. On speech
input, GLR* has acceptable translations for 44.5% of the utterances, while Phoenix has acceptable
translations for 45.8%.
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GLR* Performance on ATIS Domain

For the ATIS evaluation, we used a set of 120 unseen speech recognized sentences. The portion
of parsable sentences increased from 51.7% for GLR to 99.2% for GLR*. However, the portion
of parsable sentences with an acceptable parse increased only by 10.8% (from 50.0% for GLR,
to 60.8% for GLR*). The evaluation of the parse quality heuristic shows that while the portion
of bad parses out of the parses marked “Bad” by the parser is still very high (91.3%), the parse
quality heuristic is somewhat less effective on parses marked “Good”. Only 74% of the parses
marked “Good” were in fact acceptable. Further inspection, however, indicated that 11 marked
“Good” sentences had bad parses due to incorrect ambiguity resolution. If the correct ambiguity
were chosen for these parses, the portion of good parses out of parses marked “Good” would reach
85%, similar to the comparable figures found in the JANUS evaluations.

1.3.6. Parsing Speech Lattices using GLR*

In practice, the top-best hypotheses produced by our speech recognition system are far from
perfect. Speech recognition errors hinder on the ability of the parser to find a correct analysis for
the utterance, and the effects of this toll are reflected in the disparity between our performance
results on transcribed and speech recognized input. Processing multiple speech hypotheses instead
of a single hypothesis thus has the potential of detecting a hypothesis with fewer recognition errors,
which should lead to an improvement in the overall translation performance. In Chapter 7, we
investigate how GLR* can be adapted into a parser capable of directly parsing speech produced
word lattices.

The Advantages of Parsing Speech Lattices

Parsing the speech lattice directly attempts to efficiently accomplish the same results of parsing an
n-best list. Instead of first extracting the list of hypotheses from the speech lattice, and then parsing
each of them separately, we use a version of the parser that can parse the lattice directly. Each
word in the lattice is parsed only once, although it may contribute to many different hypotheses.
The lattice parser produces a large set of possible parses, corresponding to the parses of various
complete word paths through the lattice. This set of parses can be scored and ranked according
to the parse score, or according to some optimized combination of the parse score and recognizer
score.

The GLR* Lattice Parsing Algorithm

For the lattice parser to function correctly, it is essential that the words of the lattice be parsed in
a proper order. If a lattice word ��� 1 	�� 1 ��� 1

� � appears prior to ��� 2 	�� 2 ��� 2
� � in some path through the

lattice, then they must be parsed in that order. A simple procedure can verify that the lattice words
are properly ordered prior to parsing.

In the lattice parsing version of GLR*, the shift distribution step was modified to handle lattice
input words. Similar to the string parsing version of GLR*, shift actions must first be distributed to
state nodes that do not result in any new skipped words. Subsequently, if the number of shift actions
distributed has not already acceded the beam-width, other inactive state nodes are considered as
well. State nodes that result in fewer skipped words are considered first. This is done by first
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detecting all levels that correspond to words of distance one from the current word. Shift actions
are then distributed to state nodes of these levels. If the total number of shift actions distributed is
still below the beam-width, we proceed to find the levels that correspond to words of distance two,
and distribute shift actions to the state nodes of these levels as well. This process continues until
the total number of distributed shift actions reaches the beam-width.

When dealing with a general word lattice, determining word connectivity and lattice paths is
more complicated. For two arbitrary words ��� 1 	�� 1 ��� 1

� � and ��� 2 	�� 2 ��� 2
� � in the lattice, there could

be zero, one, or multiple paths of lattice words that connect them. We thus developed a procedure
for determining the connectivity of two points in the lattice.

An additional field was added to the symbol node structure, in order to keep track of the set of
lattice words that are “covered” by the symbol. This set contains all the words that were actually
parsed in the sub-parse tree rooted by the symbol. The ambiguity packing procedure of the parser
was also slightly modified. Two symbol nodes of the same grammar category can be packed by the
lattice parser only if they both correspond to a parse of the exact same sub-path in the lattice.

The Lattice Processing Version of JANUS

The lattice parsing version of GLR* has been incorporated into a lattice processing version of
the JANUS system. This required some changes in the configuration of the system. For each
input utterance, instead of producing a top-best hypothesis or an n-best list, the speech recognition
module outputs a complete scored word lattice. The lattices produced by the speech recognizer are
usually far too large and redundant to be parsed in feasible time and space, and require significant
pruning in order to be parsed. We use a lattice pre-processor for this task. The pre-processor
performs four major functions. First, it collapses noise-words, and removes redundant paths that
differ only in noise-words. Next, it breaks the lattice into sub-lattices according to pauses in the
speech signal, which are highly correlated with clause boundaries. Third, the transformed sub-
lattices are rescored with a language model. Finally, each sub-lattice is pruned to a parsable size
using a method that ensures that the best scoring hypotheses are not pruned out. The resulting
sub-lattices are then separately passed on to the lattice parser for parsing. A post-parsing procedure
combines the results of parsing the sub-lattices into a ranked list of output results which is passed
on to the discourse processor and to the generation module.

Performance Evaluation

We have recently conducted an evaluation to measure the performance of the lattice parsing ap-
proach. On a common test set of 14 unseen English dialogs (99 utterances), we compared the
results of using the lattice processing version of the JANUS system with the results of processing
the top-best speech hypothesis. The preliminary results show only a slight improvement in the total
percentage of acceptable translations, which increased from 41.4% for parsing the top-best speech
hypothesis, to 44.5% when parsing lattices. This compares with a performance of 83.9% acceptable
translations on the transcribed input of the same data. The lattice parser succeeded to produce an
acceptable translation for 15 utterances that were badly translated due to poor recognition when the
top-best speech hypothesis was used. However, 12 utterances that were acceptably translated by
using the top-best speech hypothesis, were translated poorly when using the lattice parser. In most
of these cases, this was due to the fact that the lattice parser prefered a hypothesis in the lattice
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that produced a better parse score than the top-best speech hypothesis, even though it contained
more speech recognition errors. Such problems could possibly be resolved by a better combination
scheme between the acoustic score and the parser score, and by improvements in the parse score
heuristics, and require further investigation.

1.4. Thesis Contributions
The major contributions of this thesis are the following:

1. The development of an efficient robust general parsing architecture, capable of significantly
reducing the problems of noise contaminated input and limited grammar coverage.

2. The development of a general framework for evaluating and ranking sets of competing parse
analyses, that is capable of combining a variety of knowledge sources and heuristic evaluation
measures. Additionally, the development of a parse quality heuristic, that allows the parser
to self-judge the quality of its output results.

3. The demonstration of the effectiveness and practical feasibility of the methods employed
by GLR* in parsing spontaneous speech input, by substantially enhancing the end-to-end
performance of the JANUS speech-to-speech translation system.

1.5. Previous Related Work

1.5.1. Other Approaches to Robust Parsing
There have been several different approaches to robust parsing in the last decade. To avoid failure
when faced with extra-grammatical input, most approaches relax syntax and grammar constraints.
In some cases, semantic information is used to compensate for the lack of grammaticality in order
to partially or completely drive the analysis process.

Hayes and Mouradian [32] were among the first to try to tackle these kind of problems. They
developed a pattern matching parser that parsed the input in a bottom-up fashion. Robustness is
achieved by using a number of flexible pattern matching schemes and by allowing parses to be
suspended when faced with unexpected input, and then reactivated with later input words. To limit
the search for the best analysis as much as possible, the system uses an ordered set of parsing
heuristics of increasing flexibility. For each parsed word, the system attempts to expand its existing
partial parses using the more restrictive methods first. A more flexible method is applied only when
the previous method failed to account for the new word.

In another early work, Kwasny and Sondheimer [50] attempt to handle input that contains
segments that are unparsable by using a bottom-up ATN parser that can recognize grammatical
fragments. The ATN grammar allows fragments to be accepted as complete analyses, but only at
times where they are predicted by contextual information.

Lang [53] develops a parsing algorithm that is capable of parsing incomplete sentences that
contain segments of one or more unknown words, and can efficiently represent the parse forest for
such sentences. Although Lang suggests that the principles of this method should prove useful in
the analysis of ill-formed input, it is not clear how this can be done in a practical way.
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Other systems such as BBN’s DELPHI system [89] and the MIT ATIS system [85] construct fall-
back components that are designed to handle extra-grammatical input that causes the main parser
to fail. The DELPHI system incorporates both syntax and frame-based fragment combination
components. In the MIT system, grammatical constraints are relaxed when an input fails to
parse in full, and the system attempts to combine partial parsed fragments, in search of the parse
that consumes the most words of the original sentence. Weischedel and Black [105] describe a
method for relaxing predicates in an ATN grammar which check for noun-verb agreement and
other syntactic or semantic constraints.

Jensen and Heidorn’s PLNLP system, and it’s comprehensive syntactic English grammar PEG
[38] use a “fitting” procedure to produce a reasonable parse structure for sentences that cannot
be completely grammatically parsed. The fitting heuristic attempts to combine the largest parsed
constituents into a complete structure by first selecting a head constituent and then attaching the
remaining constituents to the head using some heuristic rules.

A different method for completing partial parses is suggested by Nasukawa [73]. Information
from well-formed analyzed sentences in the surrounding text is used to reanalyze the part-of-speech
and modifiee-modifier relationships of each word in the ill-formed sentence. If the resulting partial
parses can still not be combined into a grammatical structure, the “discourse” information is once
again used in order to combine the partial parses in a way that is most consistent with similar
structures in the surrounding text. An implementation of the method in a machine translation
system improved the accuracy of the translations produced by the system.

Another notable attempt to handle ill-formed input by a general purely syntactic method is
presented by Mellish [68]. Mellish describes how to augment a chart parser with a procedure that
can focus on an error in the input once the parser has failed. The error is detected by performing a
top-down search through the chart left behind by the parser. Although the method can potentially
handle missing words as well as misspelled and extra words, it is demonstrated to work reasonably
well only in the case of a single error, and is not expected to generalize well to multiple errors.

Strzalkowski [90] describes TTP, a syntactic top-down parser implemented in Prolog, that is
extremely fast, and uses a time-out mechanism that can skip unrecognized segments of the input
and segments that were not parsable within preset time bounds. A stochastic tagger is used in
an attempt to resolve lexical ambiguities prior to parsing, by assigning part-of-speech tags to the
input words. The skipping and time-out parameters must be encoded explicitly into the rules of the
grammar, and the parser’s behavior and output quality are very sensitive to these encodings. This
appears to considerably complicate the task of grammar development for the parser, and hinders
on the generality of the TTP approach.

Carbonell and Hayes [10], in an early work that attempts to deal with a wide range of extra-
grammatical phenomena, suggest that a semantic case-frame approach to parsing is the suitable
way to handle many types of extra-grammaticality. Semantic interpretation of the input is achieved
by detecting the main semantic concept of the sentence, and then searching the sentence for
components that instantiate the semantic frames that are associated with the main concept. Hayes
et. al. [31] show how these ideas can be specifically applied to parsing spoken language. This
approach is very flexible to issues such as the order of appearance of the semantic frames in the
input. However, it is domain dependent and has difficulties in capturing syntactic and other types
of grammatical knowledge that is contained in the input.

McDonald [66] [65] describes an approach based on chart parsing, that is tailored for extracting
domain specific information from unrestricted text. The highlight of the system is in its hybrid
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approach, which combines several different analysis tools. It uses a succession of six different algo-
rithms: a tokenizer, a finite-state acceptor, a context-free phrase structure parser, a context-sensitive
parser, a conceptual analyzer and a phrase boundary prediction heuristic. All components access
a common chart data structure which records their partial results and facilitates communication.
The context-free and context-sensitive parsers use semantic grammars to combine the lower level
phrases into phrases that represent semantic concepts. These are then combined into a coherent
analysis by the conceptual analyzer, which allows gaps of unanalyzed segments of text between
the combined phrases. Similar ideas can be found in Jacobs and Rau’s SCISOR information ex-
traction system [35]. The system combines bottom-up syntactic parsing with top-down conceptual
expectation-driven parsing into a flexible multi-layer parser. One drawback of these systems is
their complexity. It is not clear that robust parsing of spoken language in fact requires a system of
such complexity. Consequently, one of the goals of this thesis is to investigate whether reasonable
robustness can be achieved using a single parser based on the simpler architecture of the GLR
parsing algorithm.

Menzel [69] suggests a unified approach for achieving both syntactic and semantic robustness in
language analysis. He proposes using the Constraint Grammar formalism [41] to express syntactic,
semantic and pragmatic linguistic constraints. The violation of constraints incurs penalties, and the
importance of satisfying a constraint, as well as the relative importance of various constraints can
be modeled via penalty weights. The system can then search for an analysis (or interpretation) that
is minimal in overall penalty, and thus satisfies the constraints in the best possible way. Although
Menzel supports this approach with several examples, the approach has apparently not been fully
implemented or applied to a large scale application. However, the principle of using a weighted
penalty scheme to select the “best” analysis is central to our GLR* approach as well.

1.5.2. Other Work on Parsing Speech

The dramatic improvement in speech recognition technology in the last decade has attracted a
significant amount of research effort to spoken language processing and understanding. A variety
of speech processing systems have addressed the issues of parsing spoken language in general,
and the output of speech recognition systems in particular. Many speech processing systems have
attempted to use standard text parsing algorithms (such as GLR and chart parsers), while others
have applied some of the more robust parsing techniques described in the previous subsection.
Saito and Tomita [83], for example, describe how the standard GLR parser can be extended to
parse noisy input produced by a speech recognizer when parsing Japanese on a phoneme level.
Insertions, deletions and substitutions of phonemes are considered by the parser, and are restricted
by the set of phonemes predicted by the parsing table at each stage.

The interface between the speech recognition component and language processing is also a
major issue in spoken language systems. While some systems use a simple sequential approach
in which the top-best hypothesis of the speech recognizer (or a ranked n-best list) is passed on to
a parser, other systems have attempted a closer integration of the speech and language processing
components, by applying parsing directly to the word lattice produced by the speech recognizer.
An overview of the most common approaches to this problem can be found in [29] and [102].
The GLR* parser described in this thesis is applicable to both of these configurations, and the
issues involved in the integration of the speech and parsing components of such speech processing
systems is addressed in greater depth in Chapter 7.
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We next summarize three representative recent speech parsing systems with different ap-
proaches, and then mention some other parsing approaches, specifically designed to parse speech
lattices.

The Spoken Language Translator

One system that follows the sequential integration approach is the Spoken Language Translator
(SLT) being developed by SRI, SICS and Telia Research [1]. The speech recognition component
produces a set of hypotheses that is then passed on to the SRI Core Language Engine, a general
natural language processor. Each hypothesis is analyzed into a set of possible logical-form repre-
sentations, and the entire set of possible analyses is ranked by a parse evaluation component, where
the numerical scores attached to each analysis reflect it’s linguistic plausibility. The most unique
aspect of the language processor is an explicit repair module, which attempts to identify typical
speech disfluencies (such as false starts and repetitions) in the input hypothesis and “correct” them.
Input that cannot be parsed in its entirety is handled by a constraint relaxation method. The system
also includes a corpus-based grammar specialization module which uses a training corpus to create
a restricted version of the original grammar that is tailored to specifically cover only structures
that appeared in the training corpus. The authors claim that using the restricted version of the
grammar decreased the parsing time by two orders of magnitude, at the expense of only a 7% loss
in coverage.

Hipp’s Minimum-distance Parser

In his PhD thesis [33], Hipp describes a parser specifically designed for a spoken language dialog
system. A minimum-distance parsing algorithm is used to analyze the input utterance, and the
analysis is then converted into an internal representation using syntax-directed translation. When
the input utterance is not grammatical, the parser searches for the analysis of a grammatical string
which is “closest” to the original utterance. The method in principle allows deletions, substitutions
and insertions to be considered, with the “closest” distance being determined by using adjustable
penalties. The parsing algorithm is a bottom-up chart-based procedure, in which the set of “closest
distance” parses is incrementally constructed from “closest distance” sub-parses. The parsing
algorithm is designed to work with both string input and speech lattices. Although implemented,
the parser was tested only within a limited small scale application, operating on top-best output
of a 125 word vocabulary speech recognition system. No details are provided with respect to the
grammar used in the experiments, or the actual time and space performance of the parser. Hipp
acknowledges that it is an open question whether or not his approach can scale up feasibly to a
much larger application. Thus, even though Hipp’s approach is similar in goal to that of GLR*,
and the two systems are even similar in some of their features, it was not possible to thoroughly
compare their performance.

The Phoenix Parser and MINDS System

The Phoenix parser [103] [63] uses the semantic case-frame approach in order to achieve robustness
in the analysis of spoken language. Semantic relations are represented by concept frames. Slots in
a frame represent the semantically relevant information and are filled by matching patterns in an
input string. The patterns which fill slots are represented as Recursive Transition Networks (RTNs).
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The parser matches as much of the input utterance as possible to the patterns specified by the RTNs.
The parser selects the analysis that is highest in coverage and least in fragmentation. The Phoenix
approach has been proven to perform very well in tasks such as ATIS [104]. In several applications,
the Phoenix parser has been closely coupled with the MINDS system [104] [111], a system that
can dynamically apply linguistic and pragmatic constraints from the discourse to improve spoken
language understanding performance. A version of the MINDS system designed for the resource
management domain [111] uses dialog knowledge and a model of the user’s goals, plans and focus
to generate a set of predictions. These are then used to constrain both the speech search as well as
the grammar used by the Phoenix parser. In the context of a system for the ATIS task [104], the
constraints are used to detect and correct erroneous parses, skipped or overlooked information, and
out of domain requests. The Phoenix parser is also used as an alternative parsing architecture to
GLR* within the JANUS speech-to-speech project at CMU. Performance evaluations that include
a detailed comparison of Phoenix and GLR* are presented in Chapter 6 of this thesis.

Parsing Speech Lattices

Several works have attempted to apply standard parsing algorithms to speech lattices. Chow and
Roukos [12] show how to apply a chart parser to a speech lattice, using a dynamic programming
procedure to associate the best score with each grammar phrase found. Tomita [93] describes how
the GLR parsing algorithm can be modified for parsing lattices, so that only parses of completely
grammatical hypotheses in the lattice are produced. Staab [88] describes how the efficiency of
this approach can be increased by augmenting it with a beam search method. Nakagawa [72]
uses a time-synchronous top-down parser to achieve a similar goal. Saito [82] describes how a
speech lattice can be parsed efficiently in an island-driven fashion starting from “anchor” words
(words with highly confident speech scores) using a bi-directional version of the GLR parser. Lavie
and Tomita [56] describe a word-order-free version of the GLR parsing algorithm and show how
it can be used in conjunction with an A* heuristic to efficiently find and parse the best scoring
grammatical speech hypothesis in the speech lattice.

Not much research has been done into applying some of the more robust parsing methods to
lattice parsing. Hanrieder [28] parses the lattice using a chart-based island parser, which assigns a
quality score to each generated sub-parse. The scoring function integrates acoustic, syntactic and
semantic quality measures. The parser then searches for the best scoring hypothesis, which can be
a collection of partial parses. Giachin and Rullent [78] describe a system that parses a speech lattice
using pre-compiled knowledge sources that combine both syntactic and semantic constraints. In
Chapter 7 of this thesis, we investigate how a lattice parsing version of GLR* can improve the
translation quality of the JANUS speech-to-speech translation system.

Several other works have attempted to integrate grammatical constraints directly into the speech
recognizer’s search and scoring. Hauenstein and Weber [30] investigate several methods for ap-
plying the constraints of a unification based chart parser directly into the speech search. Similar
approaches are investigated by Ney [74] and Okada [77]. Murveit and Moore [71] [70] describe
how a dynamic grammar network can restrict an HMM based speech recognizer to consider only
grammatical hypotheses. Kita [46] uses the LR parsing table of a GLR parser to predict words,
which are then used to constrain an HMM based speech recognizer. The MIT Voyager system
[113] uses the generation capability of their TINA parser [86] to create a linguistically constrained
bigram language model which is then integrated into the speech search.
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1.5.3. Adaptive and Self-learning Approaches
There has also been some research into methods that allow a language processing system to self-
adapt to language that is outside the coverage of its original language or grammar, or even to acquire
linguistic and grammatical knowledge automatically.

CHAMP, a parsing system developed by Jill Fain Lehman in her PhD thesis [59], is a system
that can adapt itself to the types of expression and linguistic idiosyncrasies of a particular user. The
premise behind the approach is that the language of a user is idiosyncratic but also self-bounded,
and therefore, after a period of adaptation, the system can adjust itself to the the user’s preferred
subset of the language. When confronted with input that is beyond the coverage of the existing
grammar, CHAMP’s bottom-up parser conducts a search for a “least-deviant” analysis, an analysis
of a grammatical input that is closest in meaning to the original input. After a “resolution phase”
in which the meaning of the utterance is established unambiguously by some interaction with
the user, the system adapts its grammar and/or lexicon so that future similar expressions will be
analyzable as completely grammatical. The types of deviations considered by the system include
substitutions, insertions, deletions and transpositions of words. The CHAMP system has, however,
some major limitations. The interpretation of deviations is heavily dependent on a detailed and
accurate domain model, which limits the system’s applicability to narrow domains, and hinders
on its transportability to new domains. Although not designed to handle the particular types of
disfluencies typical of spontaneous speech, it is unlikely that CHAMP will be suitable for such
input, since only very limited amounts of deviation are tolerated by the system (due to search
feasibility). Furthermore, proper adaptation in the system requires interaction with the user, which
is unacceptable or undesirable in many spoken language applications.

There have also been a few attempts to apply connectionist approaches to the analysis of spoken
language. This direction seems promising, since neural networks are tolerant of noisy input, and
with adequate training can often automatically learn the knowledge necessary for their proper
functionality. A notable work along these lines is PARSEC [36], a connectionist system developed
by Ajay Jain, which is specifically designed to parse spoken language. The system consists of a
number of tools for creating connectionist parsing networks that learn to parse from exposure to
training sentences and their desired parses. The networks are structured, modular and hierarchically
organized and are augmented with non-connectionist mechanisms for processing symbolic input.
The parsed output is in the form of a case-based semantic interpretation of the input. PARSEC can
tolerate some speech disfluencies, grammar deviations and speech recognition errors, with only
gradual degradation in performance. It also allows easy integration of other input modalities such
as prosodic information. However, the system is weak in selecting among competing analyses or
speech hypotheses, and is limited by its fixed architecture to processing input of limited length and
grammatical complexity.
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Chapter 2

Generalized LR Parsing

2.1. Principles of LR Parsing
The Generalized LR parsing algorithm is a parsing framework that evolved out of the traditional
LR parsing techniques. These techniques were originally developed for parsing programming
languages in the late 1960s and early 1970s [47] [48] [17] [18]. LR parsers parse the input bottom-
up, scanning it from left to right, and producing a rightmost derivation. They are deterministic
and extremely efficient, being driven by a table of parsing actions that is pre-compiled from the
grammar.

The common core of all of the LR parser variants is a basic Shift-Reduce parser, which is
fundamentally no more than a finite-state pushdown automaton (PDA). The parser scans a given
input left to right, word by word. At each step, the LR parser may perform precisely one of the
following four types of actions:

1. Shift the next input word onto the stack, and move into a new state.

2. Reduce the current stack according to a grammar rule. Symbols on the stack that correspond
to the right-hand side of the rule are popped from the stack, and are replaced by a symbol
corresponding to the left-hand side of the rule. The parser then moves into a new state.

3. Accept the input.

4. Reject the input.

An action table that is pre-compiled from the grammar guides the LR parser when parsing an
input. The action table specifies the next action that the parser must take, as a function of its current
state and the next word of the input.

The stack of an LR parser is a linear structure of elements, with a defined top and bottom,
where access is permitted to the top element in the stack only. It contains two types of elements:
state nodes and symbol nodes. The bottom element in the stack is a state node that corresponds to
the initial state of the parser. When the parser performs a shift action, a symbol node is created for
the word being shifted and is pushed onto the stack. A state node corresponding to the new parser
state is also created and pushed on top of the symbol node. When the parser performs a reduce
action, the appropriate elements that correspond to the right-hand side of the rule being reduced are
popped from the stack. The left-hand symbol of the rule is then pushed onto the stack, followed
by the new state. During parse time, the state node at the top of the stack at each point in time is
known as the active state of the parser.
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Given a grammar, algorithms of the LR parsing framework automatically construct the table
of parsing actions appropriate for the grammar. However, only a subset of context-free grammars
(CFGs) allow the construction of a deterministic LR parsing table. The class of such grammars is
called LR grammars, and the languages which they define are known as LR languages. Grammars
and languages that are not LR cannot be parsed deterministically by an LR parser. The parsing
table constructed for such grammars has entries that contain multiple conflicting actions. Extended
lookaheads into the input can help resolve the table conflicts in certain grammars and enable the
construction of a deterministic parsing table. Parsers that employ such lookaheads are called LR(k)
parsers, and the grammars that may be parsed by them are called LR(k) grammars. A detailed
description of the theory behind the various LR parsing techniques may be found in Aho and
Ullman [4]. A more practical description of LR parsers appears in Aho and Ullman [5] and Aho
et. al. [3]. A general survey of LR parsing can be found in Aho and Johnson [2].

The extreme efficiency of the LR parser is a direct result of the ability to deterministically parse
the input in a single left-to-right pass. LR parsers parse their input in time that is linear in the length
of the input string. LR parsers also have the valid prefix property, which allows them to detect
ungrammatical input as early as possible.

The class of LR grammars excludes any ambiguous grammars. Thus, the ambiguity that is
inherent in most grammatical descriptions of natural language appeared to imply that the efficient
LR parsing techniques could not be applied to the parsing of natural languages. Other algorithms
suitable for parsing general CFGs were thus used for parsing with natural language grammars.
In particular, Earley’s algorithm [19], Chart Parsers [43], and the CKY parsing algorithm [112]
received wide-spread use and attention.

2.2. The GLR Parsing Algorithm
Tomita’s Generalized LR parsing algorithm [94] extended the original LR parsing algorithm to
the case of non-LR languages, where the parsing tables contain entries with multiple parsing
actions. The algorithm deterministically simulates the non-determinism introduced by the con-
flicting actions in the parsing table by efficiently pursuing in a pseudo-parallel fashion all possible
actions. The primary tool for performing this simulation efficiently is the use of a Graph Structured
Stack (GSS). Two additional techniques, local ambiguity packing and shared parse forests, are used
in order to efficiently represent the various parse trees of ambiguous sentences when they are parsed.
The following subsections provide some further detail about these three major components of the
algorithm. Although the original GLR parsing algorithm as designed by Tomita has a worst case
time complexity of ��	�
 ��� 1 � , where � is the length of the the longest production in the grammar (a
revised version by Kipps runs in ��	�
 3 � time), in practice the algorithm usually performs in almost
linear time. Thus the performance of GLR often surpasses that of other natural language parsing
algorithms.

2.2.1. The Graph Structured Stack

The Graph Structured Stack (GSS) is a data structure that supports the compact representation of
a set of stacks of the LR parser. Similar to an LR stack, the GSS contains state nodes and symbol
nodes. A state node that corresponds to the initial state of the parser is at the root of the GSS. Each
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Figure 2.1 Several Instances of the GSS

path from the root of the GSS to a leaf node corresponds to an LR stack. Thus, instead of a single
active state node, the GSS contains a set of active nodes.

Whenever the GLR parser encounters a situation in which the parsing table specifies multiple
actions, the GSS is split into separate branches, each of which pursues one of the actions specified
by the parser. Branches of the GSS are merged back together whenever they end in identical active
states. The merging of such branches allows pursuing further actions of the parser that are common
to these branches in an efficient way.

Figure 2.1 depicts several instances of a GSS in which these situations may be seen. State
nodes are displayed as circles, with the state indicated on top of the node. Active state nodes
are shadowed, and inactive state nodes are displayed as clear outlined circles. Symbol nodes are
displayed as squares, with the symbol indicated on top of the node. The GSS on the top of the figure
shows a case where the parser has not yet encountered a multiple action. The GSS thus consists
of a single path. The GSS in the middle of the figure shows a case where the GSS was split after
state 1, due to multiple actions. Two different non-terminals, � and � , where recognized, with the
parser moving into states 3 and 4 respectively. The GSS on the bottom of the figure corresponds
to the case where the parser has shifted the next input word “c” from both state 3 and state 4.
The resulting state in both cases is state 5, and the two branches of the GSS are thus merged back
together.

2.2.2. Local Ambiguity Packing

When a portion of the input sentence can be parsed and reduced to a non-terminal symbol of
the grammar in more than one way, we have a local ambiguity. In the GSS, local ambiguities
correspond to situations where the following conditions occur:
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1. The GSS contains several distinct branches that start and end in the same state nodes

2. Each of the branches contains a single distinct symbol node

3. The symbol nodes all correspond to the same non-terminal symbol

An example of such a situation can be seen in the GSS on the top of Figure 2.2. The process
of local ambiguity packing allows the parser to collapse such local ambiguities in the GSS into a
single branch. The data structure that is associated with the symbol node on this branch contains
pointers to the various parse ambiguities that were packed into the node. The result of a packing of
the local ambiguities seen in the top GSS of Figure 2.2 can be seen in the GSS at the bottom of the
figure. Local ambiguity packing increases the efficiency of the parser, because later actions that
involve the packed ambiguities can be performed on the single packed branch of the GSS, instead
of on each of the individual branches that existed prior to the ambiguity packing.

2.2.3. Shared Packed Forests
The GLR parsing algorithm keeps track of the parse trees constructed in the course of the parsing
process via additional structures called parse nodes. Whenever a symbol node is created, an
associated parse node is created along with it. Elementary parse nodes are created for symbol
nodes of terminal symbols (as a result of shift actions). When a symbol node is created as a result
of a reduction according to some rule of the grammar, a more complex parse node is constructed.
The parser first obtains the symbol nodes that correspond to the right-hand side of the rule being
reduced from the GSS. Subsequently, pointers to the parse nodes associated with these symbol
nodes are obtained, and are then saved in a “sons” field of the new parse node that is created for
the left-hand side symbol node. At the end of the parsing of the input, the parser can reconstruct
the various parse trees obtained by following the “son” pointers in the parse nodes.

By representing the parse trees via parse nodes and pointers, the parser constructs a represen-
tation where subtrees that are common to several different parse trees are shared and represented
only once. This property is called subtree sharing and a parse forest with such a property is called
a shared forest.
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Local ambiguity packing reduces the representation of the parse forest even further. When local
ambiguity packing creates a packed symbol node, a packed parse node is created along with it. The
packed parse node contains “son” pointers to the parse nodes of the various local ambiguities. A
parse forest with both subtree sharing and local ambiguity packing is called a packed shared forest.

2.3. Computational Complexity and Performance of the
GLR Parser

As noted earlier, the primary motivation in the development of the GLR parsing algorithm was the
extreme efficiency of the LR parsing algorithms. Although the GLR parsing algorithm can handle
any CFG1, it is inherently designed in a way that makes it more efficient for grammars for which
the pre-compiled parsing tables contain fewer multiple entries. This property can be viewed as a
measure of how “close” the grammar is to being LR. It is generally the case that less ambiguous
grammars translate into parsing tables with fewer multiple actions. The practical value of the GLR
parser therefore depends on the nature of the grammars for which it is used. Later in this section,
we mention several performance evaluations that demonstrate how the GLR parser outperforms
other parsing algorithms when applied to various practical natural language grammars.

From a theoretical computational complexity standpoint, the worst case time complexity of
Tomita’s original version of the GLR parsing algorithm is in fact inferior to that of other common
parsing algorithms. The fundamental LR(k) parsing algorithms have a time complexity of ��	�
 � ,
where 
 denotes the length of the input. In contrast, common parsing algorithms for general CFGs
such as Earley’s have a time complexity of ��	�
 3 � . The algorithm for CFL recognition with the best
asymptotic time complexity known to date is due to Valiant [99], who reduced the problem of CFL
recognition to that of matrix multiplication. Although the upper bound on matrix multiplication
stands today at ��	�
 2 � 376 � [15], the constant factors associated with Valiant’s indirect algorithm
make it far less attractive in practice.

Johnson [39] and Kipps [45] show that the original GLR parsing algorithm as designed by
Tomita has a worst case time complexity of ��	�
���� 1 � , where � is the length of the the longest
production in the grammar. Kipps, however, presents a revised version of GLR that runs in ��	�
 3 �
time.

Actual performance evaluations by Tomita and others has shown that many practical grammars
for the analysis of natural language are sufficiently “close” to being LR, making the use of the
GLR parser preferable to that of other parsing algorithms. Tomita [94] compared the performance
of the GLR parser with that of a similar implementation of Earley’s algorithm. The evaluation
was conducted using several different practical grammars for natural language analysis. The GLR
parser outperformed the Earley parser by a factor of at least two in all of the experiments. Tomita’s
evaluations also demonstrated that for the various practical natural language grammars, both parsing
time and space remain tractable as a function of sentence length, sentence ambiguity and grammar
size.

Another comparative evaluation was conducted by Shann [87]. In his experiments, Shann
compared Tomita’s GLR parser with four different chart parsers with different rule invocation

1Tomita’s original version of GLR is incapable of handling infinitely ambiguous and cyclic grammars. A later version
of the parser by Nozohoor-Farshi [76] extended the algorithm to handle these cases.
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(<DECL> <--> (<NP> <VP>)
(((x2 agr) = (x1 agr))
((x0 subject) = x1)
((x2 form) = *finite)
(x0 = x2)))

Figure 2.3 An English Grammar Rule of the GLR Parser/Compiler

strategies. The conclusions of the evaluation were that, in most cases, the GLR parser performed
better than the other parsers, particularly in situations of high ambiguity. Shann contributes this
result to the efficiency of the shared packed parse forest representation.

2.4. GLR and Unification Based Grammars

Much attention has been given in the last decade to unification based formalisms such as LFG [40],
GPSG [23] and HPSG [79], as declarative theories for describing the structure of natural language.
A fundamental primitive of these formalisms is the unification of feature based representations.
Several recent practical systems for structural analysis of natural language have been designed to
support unification based grammar specifications within a general CFG framework, that allows the
system to incorporate known CFG parsing algorithms as the core of the system’s implementation.
Two examples of such systems are the Core Language Engine (CLE) [6] and the Alvey Natural
Language Tools (ANLT) [11].

The Generalized LR Parser/Compiler [96] [95] is a unification based practical natural lan-
guage system that was designed based on the GLR parsing algorithm at the Center for Machine
Translation at Carnegie Mellon University. The system supports grammatical specification in an
LFG framework, that consists of context-free grammar rules augmented with feature bundles that
are associated with the non-terminals of the rules. For each context-free rule, the grammar formal-
ism allows the specification of the feature structure associated with a left-hand side non-terminal
of the rule as a function of the feature structures that are associated with the non-terminals on the
right-hand side of the rule. The parser computes the actual feature values of a particular left-hand
side non-terminal as a by-product of the reduce operation that reduces the right-hand side of the
rule to the left-hand side non-terminal. Feature structure computation is, for the most part, specified
and implemented via unification operations. This allows the grammar to constrain the applicability
of context-free rules. A reduction by a context-free rule thus succeeds only if the associated feature
structure unification is successful as well.

An example of an augmented grammar rule is shown in Figure 2.3. The variable  0 in the
feature specification part of the rule is bound to the left-hand side non-terminal DECL of the
context-free part of the rule. The variables  1,  2, etc. are respectively bound to the right-hand
side constituents of the rule.

The feature structures that are computed at parse-time are attached to their corresponding parse
node structures. At the end of parsing an input sentence, the parser returns a list of the top parse
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nodes in the parse forest, as well as the computed feature structure associated with each of these
nodes.

The Generalized LR Parser/Compiler is implemented in Common Lisp, and has been used as
the parsing component of several different projects at the Center for Machine Translation at CMU
in the course of the last several years.
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Chapter 3

The GLR* Parsing Algorithm

3.1. Introduction
The GLR parser described in the previous chapter, as well as most other natural language parsing
algorithms, are designed to analyze “clean” grammatical input. By the definition of their recogni-
tion process, these algorithms are designed to detect ungrammatical input at the earliest possible
opportunity, and to reject any input that is found to be ungrammatical in even the slightest way.
This property, which requires the parser to make a complete and absolute distinction between gram-
matical and ungrammatical input, makes such parsers fragile and of little value in many practical
applications, where completely grammatical input is the exception more than the rule.

The GLR* parsing algorithm, which is described in this chapter, is an extended version of
the Generalized LR parsing algorithm that was designed to be robust to two particular types of
extra-grammaticality: noise in the input, and limited grammar coverage. Both phenomena cause a
common situation, where the input contains words or fragments that are unparsable. The distinction
between these two types of extra-grammaticality is based to a large extent upon whether or not the
unparsable fragment, in its context, can be considered grammatical by a linguistic judgment. This
distinction may indeed be vague at times, and of little practical importance.

GLR* attempts to overcome these forms of extra-grammaticality by ignoring the unparsable
words and fragments and conducting a search for the maximal subset of the original input that is
covered by the grammar. Identifying the words and fragments that the parser should ignore is not a
trivial task, since the incremental nature of the parsing process is such that words and fragments that
are locally grammatical may fail to combine with other parts of the input into a full grammatical
sentence.

There are two major underlying assumptions behind this approach:

1. The parse that can be obtained by using GLR* is valuable. This assumes that the words
and fragments that have to be skipped in the process of parsing the input are, for the most
part, not crucial to the general correctness and utility of the obtained parse.

2. A parse that covers more words of the input is better. This assumption dictates that the
parser should always prefer the parse that obtains the maximal coverage of the input.

Although these two assumptions form the premise upon which GLR* is founded, it is crucial
that the developed parser include the proper mechanisms for identifying the conditions in which they
break down. GLR* addresses these issues via a sophisticated parse scoring mechanism that allows
the parser to evaluate the relative value of different alternative parses, and to identify cases when
even the parse that was ranked best is not adequate. Furthermore, the parser’s scoring mechanism
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provides a tool by which the general preference for maximal coverage may be combined with other
preferences into a general scheme for selecting the best parse from among the set of alternatives
found by the parser. The scoring mechanism is addressed in full in Chapter 5.

Under the assumption that the goal of the parser is to search for the parse that obtains the
maximal coverage of the original input, the problem can be formalized in the following way:

Given a context-free grammar ! and a sentence " , find and parse "$# - the largest subset of
words of " , such that "%#�&(')	*! � .

A naive approach to this problem is to exhaustively list and attempt to parse all possible subsets
of the input string. The largest subset can then be selected from among the subsets that are found to
be parsable. Such an algorithm is clearly computationally infeasible, since the number of subsets
is exponential in the length of the input string. However, the number of grammatical subsets of a
given input string is likely to be much smaller1. The idea behind GLR* is thus to devise an efficient
method for parsing this collection of grammatical subsets.

3.2. The Unrestricted GLR* Parsing Algorithm
In this section, we provide an outline of the basic unrestricted GLR* parsing algorithm. This
algorithm is designed to find and parse all possible grammatical substrings of a given input. We
refer to this basic version of GLR* as “unrestricted”, because the algorithm contains no restrictions
on the combinations of words of the input that are allowed to be skipped. As an extension of
the GLR parsing algorithm described in the previous chapter, GLR* uses similar data structures.
Particularly, GLR* uses the same parsing tables that are pre-compiled from the grammar. It is only
the run-time parsing part of the algorithm that is different.

The key difference between GLR and GLR* is in their use of the Graph Structured Stack. GLR
uses the GSS as an extended version of a stack, where only the active nodes at the top of the stacks
are accessible. GLR*, on the other hand, views the GSS as a chart that records partial parses and
the state of the parser when they were created. GLR* thus maintains a structure representing the
complete GSS throughout the parsing process, and allows access to all nodes in this structure, not
merely the active ones.

GLR* pursues the parses of all possible subsets of the input by allowing the parser to skip
over words of the input in a controlled way. With an LR style parser that uses lookaheads into the
input, allowing the parser to skip over words has implications on the lookaheads used by the parser,
which complicates the algorithm considerably. However, a number of studies have demonstrated
that with practical natural language grammars, using a GLR parser with extended lookaheads can
in fact damage the parser’s efficiency [8]. For these reasons, GLR* was designed to work with no
lookaheads. It therefore uses LR(0) parsing tables.

3.2.1. Design Considerations

There are two ways in which the skipping of words of the input can be implemented in the parser, a
forward looking technique and a backward looking technique. With the forward looking technique,

1There exist CFGs for which the number of grammatical subsets of an input is still inherently exponential. However,
the number of grammatical subsets in practical natural language grammars is usually much smaller.
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whenever the parser moves to the processing of a new input word, it must consider the option of
omitting the word. Since reduce operations in an LR(0) parser do not depend on any lookahead, it
is only the shift actions of the parser that are affected. In the forward looking technique, at each
new shift stage, the parser would have to consider shifting all remaining words in the input buffer
from the current set of active state nodes. By shifting a word further down the input, the parser
would in effect be skipping all words between the previously processed word and the new word
being shifted.

The backward looking technique accommodates skipping words of the input string by allowing
shift operations to be performed from inactive state nodes in the GSS. Shifting an input symbol
from an inactive state is equivalent to skipping the words of the input that were encountered after
the parser reached the inactive state and prior to the current word that is being shifted. Since the
parser is LR(0), previous reduce operations remain valid even when words further along in the
input are skipped, since the reductions do not depend on any lookahead.

The main difference between the two techniques is in execution order, namely at what point
of the algorithm are word skipping shift operations considered. The forward looking technique
requires the parser at each stage to process all remaining words of the input, whereas the backward
looking technique uses the inactive state nodes of the GSS. A more careful inspection reveals,
however, that the two methods may differ significantly in efficiency. In the forward looking
technique, since the same word is shifted at different stages of the algorithm, reduce actions that
follow each such shift are performed multiple times. In the backward looking technique, the word
is shifted from all possible states at the same time, and subsequent reduce operations are then
performed only once. GLR* therefore uses the backward looking method.

The backward looking method allows the parser to consider parses of only grammatical subsets
of the input. Even though the algorithm attempts to shift each new input word from all existing
active and inactive state nodes in the GSS, such a shift operation succeeds only when the partial
parse that ends in a particular state node can indeed be extended by the new shifted word according
to the grammar. Thus, the parser will parse all possible grammatical subsets of the original input,
all of which will be represented in the final GSS.

3.2.2. Outline of the Unrestricted GLR* Algorithm

We can now present a high-level outline of the unrestricted GLR* parsing algorithm. Similar
to the GLR algorithm, GLR* parses the input in a single left-to-right scan of the input, processing
one word at a time. The processing of each input word is called a stage. Each stage consists of two
main phases, a reduce phase and a shift phase. The reduce phase always precedes the shift phase.
The outline of each stage of the algorithm is shown in Figure 3.1. RACT(st) denotes the set of
reduce actions defined in the parsing table for state +-, . Similarly, SACT(st,x) denotes the shift
actions defined for state +-, and symbol  , and AACT(st,x) denotes the accept action.

The last stage of the algorithm, in which the end-of-input symbol “$” is processed, is somewhat
different. The READ, DISTRIBUTE-REDUCE andREDUCE steps are identical to those of previous
stages. However, a DISTRIBUTE-ACCEPT step replaces the DISTRIBUTE-SHIFT step. In the
DISTRIBUTE-ACCEPT step, accept actions are distributed to all state nodes +., in the GSS (active
and inactive), for which AACT(st,$) is true. Pointers to these state nodes are then collected
into a list of final state nodes. If this list is not empty, GLR* accepts the input, otherwise, the
input is rejected. Finally, the GET-PARSES step creates a list of all symbol nodes that are direct
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(1) READ:
Read the next input token x.

(2) DISTRIBUTE-REDUCE:
For each active state node st, get the set of reduce actions
RACT(st) in the parsing table, and attach it to the active
state node.

(3) REDUCE:
Perform all reduce actions attached to active state nodes.
Recursively perform reductions after distributing reduce
actions to new active state nodes that result from previous
reductions.

(4) DISTRIBUTE-SHIFT:
For each state node st in the GSS (active and inactive),
get SACT(st,x) from the parsing table.
If the action is defined, attach it to the state node.

(5) SHIFT:
Perform all shift actions attached to state nodes of the GSS.

(6) MERGE:
Merge active state nodes of identical states into a single
active state node.

Figure 3.1 Outline of a Stage of the Unrestricted GLR* Parsing Algorithm

descendents of the final state nodes. These symbol nodes represent the set of complete parses found
by the parser, and contain pointers to the roots of the parse forest.

3.3. Enhanced Local Ambiguity Packing

As described in the previous chapter, a local ambiguity is a situation in which a portion of the input
sentence can be parsed and reduced to a non-terminal symbol of the grammar in more than one
way. The GLR parsing algorithm identifies situations in which local ambiguities occur and creates
a common non-terminal symbol into which the local ambiguities are packed.

Due to the word skipping behavior of the GLR* parser, local ambiguities occur on a much more
frequent basis than before. In many cases, a portion of the input sentence may be reduced into a
particular non-terminal symbol in many different ways, when considering different subsets of the
input that may be skipped. The original local ambiguity packing procedure would have packed all
such local ambiguities into the common symbol node representing the non-terminal.
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Since the ultimate goal of the GLR* parser is to produce maximal (or close to maximal) parses,
the process of local ambiguity packing can be used to discard partial parses that will surely not
lead to the desired maximal parse. Local ambiguities that differ in their coverage of an input
segment can be compared, and when the word coverage of one strictly subsumes that of another,
the subsumed ambiguity can be discarded. This is due to the fact that the following property of
compositionality holds in this case:

Property 1 Property of Compositionality: Let � 1 and � 2 be two local ambiguities
that are packed into some non-terminal symbol � , and assume that � 1 strictly subsumes
� 2 in terms of their covered words (i.e. � 2 skips more words than � 1 and every word
� that was skipped in the analysis corresponding to � 1 was also skipped in the analysis
corresponding to � 2). Now let / 2 be a full parse tree which incorporates the sub-
analysis � 2. We now look at the parse tree / 1, which is obtained by replacing the
sub-tree � 2 in / 2 with the sub-tree � 1. / 1 is a full parse tree that is guaranteed to have
greater word coverage than / 2. Thus, � 2 cannot be part of a maximal parse tree, and
may be discarded.

The discarding of local ambiguities that are subsumed in word coverage by other sub-analyses
simplifies the later task of finding and selecting the “best” analysis, that corresponds to the maximal
coverage parse, by greatly reducing the number of such different analyses produced along the way.

Due to these benefits, the local ambiguity packing process of GLR* has been enhanced to
include the above mentioned sub-analysis pruning. When a new local ambiguity is found, the
analyses of the two local ambiguities are compared in terms of their word coverage. In the case
that the two analyses are identical in their word coverage they are packed together as they normally
would have been. In the case that one of the analyses strictly subsumes that of the other, the
subsumed analysis is discarded. If the two analyses differ in their word coverage, but neither one
of them strictly subsumes the other, the analyses are not packed, and separate symbol nodes are
maintained for each of them.

It should be noted that the unification operations that augment the unification-based version of
GLR and GLR* introduces a potential problem with respect to the above described pruning process.
The problem arises due to the fact that the property of compositionality is not guaranteed to hold in
the case of unification augmented parsing. Because unification failures can cause rule reductions to
fail, it may be the case that a subsuming sub-analysis fails to be incorporated into a final parse tree
(due to a unification failure), while the subsumed sub-analysis would have succeeded, and would
have eventually led to the desired maximal parse.

However, due to the large performance benefits achieved using the local ambiguity packing
pruning process, we have chosen to retain the enhanced process in our current implementation of
the unification-based version of GLR*. Although the described problem with the pruning process
may in theory interfere with the ability of the parser to find the maximal parse, we have not observed
any instances of this problem occurring in any of the actual practical applications described in this
thesis.
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	 1 � S 0 NP VP
	 2 � NP 0 det n
	 3 � NP 0 n
	 4 � NP 0 NP PP
	 5 � VP 0 v NP
	 6 � PP 0 p NP

Figure 3.2 A Simple Natural Language Grammar

Reduce Shift Goto
State det n v p $ NP VP PP S
0 sh3 sh4 2 1
1 acc
2 sh7 sh8 5 6
3 sh9
4 r3
5 r1
6 r4
7 sh3 sh4 10
8 sh3 sh4 11
9 r2
10 r5 sh8 6
11 r6 sh8 6

Table 3.1 SLR(0) Parsing Table for Grammar in Figure 1

3.4. An Example

To clarify how the algorithm described in the previous section actually works, we present a step
by step runtime example. Figure 3.2 contains a simple natural language grammar that we use.
The terminal symbols of the grammar are depicted in lower-case, while the non-terminals are in
upper-case. The grammar is compiled into an SLR(0) parsing table, which is displayed in Table 3.1.
Note that since the table is SLR(0), the reduce actions are independent of any lookahead. The
actions on states 10 and 11 include both a shift and a reduce.

To understand the operation of the parser, we now follow some steps of the GLR* parsing
algorithm on the input x = det n v n det p n. This input is ungrammatical due to the
second “det” token. The maximal parsable subset of the input in this case is the string that
includes all words other than this “det”.
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0

sh3

Figure 3.3 GSS Prior to SHIFT Step of Stage 1

0 det 3

sh9

sh4

Figure 3.4 GSS Prior to SHIFT Step of Stage 2

In the figures ahead, we graphically display the GSS constructed by the parser in various stages
of the parsing process. The following notation is used in these figures:

� An active state node is represented by a black circle with the state number indicated above
it. Actions attached to the node are marked on the right.

� An inactive state node is represented by a clear circle. The state number is indicated above
the node and attached actions are indicated above the state number.

� Symbol nodes are represented as squares. The symbol label is marked above the node.

� Reduce actions are denoted by r 
 , where 
 is the index number of the grammar rule.

� Shift actions are denoted by sh 
 , where 
 is the new state into which the parser moves after
the shift action.

We follow the GSS of the parser following the reduce and shift phases of each stage of the
algorithm, while processing the input string. The initial GSS contains the single active state node
of state 0. Since there are no reduce actions from state 0, the first reduce phase is empty. With the
first input token being “det”, the DISTRIBUTE-SHIFT step attaches the action “sh3” to state
node 0. Figure 3.3 shows the GSS following this DISTRIBUTE-SHIFT step and just prior to the
SHIFT step of stage 1.

In the following SHIFT step, a symbol node labeled “det” is shifted and the parser moves
into a new active state node of state 3. The algorithm then proceeds to the next stage to process
the next input token “n”. Since there are no reduce actions from state 3, the reduce phase of this
stage is empty. In the following DISTRIBUTE-SHIFT step, shift actions are distributed by the
algorithm to both the active node of state 3 and the inactive node of state 0. Figure 3.4 shows the
GSS after this step, just prior to the SHIFT step of stage 2.

In the following SHIFT step, the input token “n” is shifted from both state nodes, creating new
active state nodes of states 9 and 4. The shifting of the input token “n” from state 0 corresponds
to a parse in which the first input token “det” is skipped. Stage 3 begins to process the next
input token “v”. First, in the DISTRIBUTE-REDUCE step, reduce actions are distributed to both
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0 det 3 n 9

n 4

r2

r3

Figure 3.5 GSS Prior to REDUCE Step of Stage 3

0 det 3 n 9

n 4

NP 2
sh7

Figure 3.6 GSS Prior to SHIFT Step of Stage 3

0 det 3 n 9

n 4

NP 2 v 7
sh4

sh4 sh9

Figure 3.7 GSS Prior to SHIFT Step of Stage 4

existing active nodes. Figure 3.5 shows the GSS at this point in time, just prior to the REDUCE step
of stage 3.

The followingREDUCE step reduces both branches into noun phrases. The two “NP”s are packed
together by the local ambiguity packing procedure. In the following DISTRIBUTE-SHIFT step,
shift actions for the input token “v” are distributed to all the state nodes. However, in this case,
only state 2 allows a shift of “v” (into state 7). The resulting GSS, prior to the SHIFT step of
stage 3, is displayed in Figure 3.6.

The following SHIFT step shifts the word “v” and creates an active state node of state 7. The
next stage begins by reading the next input token “n”. The state 7 node is the only active node at
this point. Since no reduce actions are specified for this state, the following reduce phase is empty.
Shift actions are then distributed in the DISTRIBUTE-SHIFT step. The resulting GSS is shown
in Figure 3.7.
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Figure 3.8 GSS Prior to REDUCE Step of Stage 5

0 det 3 n 9

n 9

n 4

NP 2 v 7
n 4

NP 10

VP 5

S 1

NP 2

sh3

sh3

Figure 3.9 GSS Prior to SHIFT Step of Stage 5
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Figure 3.10 GSS Prior to SHIFT Step of Stage 6

The subsequent SHIFT step then shifts the input token “n” from the three nodes that were
marked with shift actions. The next input token is “det”. Figure 3.8 shows the GSS just prior
to the next REDUCE step and Figure 3.9 after the REDUCE and DISTRIBUTE-SHIFT steps, just
before the SHIFT step. Note that the current input token “det” cannot be shifted from either
of the two active state nodes at this point. A GLR parser would have thus failed as this point.
However, the GLR* algorithm succeeds in distributing the shift actions to two inactive state nodes
in this case. The token “det” is then shifted from these two nodes.

The next stage then begins, and the input token “p” is read. Since no reduce actions can be
distributed to the active state node 3, the reduce phase is empty. DISTRIBUTE-SHIFT then
distributes shift actions to all state nodes. The GSS at this point is shown in Figure 3.10. Note that
once again, shift actions could not be distributed to the active state node, since the grammar does
not allow “p” to follow “det”. However, a shift action was distributed to the node of state 10.
This branch skips over the previous “det”, and eventually leads to the best maximal parse.

For the sake of brevity we do not continue to further follow the parsing step by step. The
final GSS, immediately following the DISTRIBUTE-ACCEPT step, is displayed in Figure 3.11.
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Several different parses, corresponding to different subsets of skipped words are actually packed
into the “S” symbol node seen at the bottom of the figure. The parse that corresponds to the
maximal subset of the input is one in which the second “det” was the only word that was skipped.

3.5. Complexity and Performance of the Unrestricted GLR*
Algorithm

In this section we look at the theoretical time and space complexities of the unrestricted GLR*
algorithm, with respect to both the length of the input and the size of the grammar. We compare
the complexity measures of GLR* with those of the underlying GLR parsing algorithm. However,
since complexity measures reflect worst-case asymptotic behavior and disregard constant factors,
they provide only limited insight into the actual time and space performance of the GLR* parser.
Therefore, following the complexity analysis, we take a look at some actual performance evalua-
tions of the unrestricted GLR* parser.

Works by Johnson [39], Kipps [45] and Carroll [11] have included thorough analyses of the
computational time complexity of Tomita’s GLR parsing algorithm. With respect to the input
length, Kipps shows that GLR has a general time complexity of ��	�
 ��� 1 � , where 
 is the length of
the input, and � is the length of the longest production in the grammar2. Kipps proposes a modified
version of GLR for recognition only, with an improved time complexity of ��	�
 3 � for grammars
with rules of arbitrary length. Carroll extends this modified algorithm so that parsing as well can
be done in time ��	�
 3 � .

With respect to the grammar size, Johnson shows that there exists a class of grammars !�1 , for
which GLR requires time Ω 	�243 5 68795:
 � . Thus, GLR has a non-polynomially-bound time complexity
with respect to the size of the grammar.

Our analysis of the time complexity of GLR* parallels the analyses of Kipps and Carroll for
the GLR parsing algorithm. This allows us to compare the complexity of GLR* with that of GLR
on a step by step basis.

3.5.1. Time complexity of Unrestricted GLR*

Complexity with Respect to the Input Length

We now look at the time complexity of the unrestricted GLR* parsing algorithm with respect to the
length of the input. For the purpose of the analysis, we first look at a single stage of the algorithm,
as it is described in Figure 3.1, and then sum up for all stages. In the following analysis, ;�"<; denotes
the total number of states in the parsing table, and � denotes the length of the longest grammar
rule. Most of the following analysis parallels that of Kipps [45]. Assume we are in the � -th stage
(processing the � -th word of input). We look at the complexity of each step in this stage:

1. READ: Reading the next input word requires ��	 1 � time.

2The length of a grammar rule is the number of symbols on the right-hand side of the rule
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2. DISTRIBUTE-REDUCE: The number of active state nodes is bounded by the constant ;�"=; .
For each active state node, we must access the appropriate state entry in the parsing table
in order to determine the reduce actions. Thus, the number of such required accesses to
the parsing table is bounded by ;�"=; . Each such access to the parsing table can be done in
constant time, and attaching the fetched reduce actions to the active state node also requires
only constant time. Therefore, an entire DISTRIBUTE-REDUCE step requires only ��	 1 �
time.

3. REDUCE: A REDUCE step is comprised of a series of discrete reductions. Each reduction
requires only constant time, so the complexity of the entire step is equal to the number of
reductions performed. The total number of reductions in a REDUCE step is the sum of the
number of initial reductions from active state nodes, and the number of subsequent recursive
reductions. First, we note that the “fan-in” of a state-node (i.e. the number of different paths
leading into the state node) is ��	�� � . Since each reduction is bounded in length by � , the total
number of reduce paths from an active state node is at most ��	�� � � . Thus, the total number of
initial reductions is at most ��	�� � � . Kipps’ analysis shows that the total number of recursive
reductions in the GLR case is also at most ��	�� � � . This holds in the GLR* case as well.
Therefore, the total number of reductions is at most ��	�� � � , as is the complexity of the entire
REDUCE step.

4. DISTRIBUTE-SHIFT: Similar to the DISTRIBUTE-REDUCE step, the distribution of
shift actions to an individual node requires only constant time. However, in GLR*, shift
actions are distributed to all state nodes in the GSS, not merely the active state nodes. At
stage � , the total number of state nodes in the GSS is ��	�� � . Thus, the time complexity of the
DISTRIBUTE-SHIFT step is ��	�� � .

5. SHIFT: A single shift operation requires only constant time. Since the previous step dis-
tributed at most ��	�� � shift actions, the total time for actually performing all distributed shift
operations is ��	�� � .

6. MERGE: A single scan through all the new state nodes created in the SHIFT step is sufficient
to merge all new state nodes of identical states. Thus, the time complexity of this step is
��	�� � .

From the above analysis, it can be seen that the complexity of the REDUCE step dominates the
complexities of all the other steps in a single stage of the algorithm. Thus, the complexity of the
� -th stage of GLR* is ��	�� � � . Summing up for all 
 stages of the algorithm, we obtain that the total
time complexity of the unrestricted GLR* algorithm is ��	�
 ��� 1 � .

One should note that for the original GLR algorithm, Carroll’s improved version allows the
REDUCE step to be performed in time ��	�� 2 � . Carroll’s modifications to GLR are completely
independent of the changes that modify GLR into GLR*. Consequently, the same improvement
can be applied to GLR* as well, with the resulting benefit on improving the time complexity of
the REDUCE step to ��	�� 2 � . However, as Carroll notes [11] (p. 111), his modification cannot be
applied to a unification-based parsing algorithm, such as the unification-based versions of GLR
and GLR*. Thus, our current implementation of the unification-based GLR* parser does not
incorporate Carroll’s improvement. Carroll also notes [11] (p. 105) that the overheads associated
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with his proposed improvement may in fact negate the expected gains from the improved time
bound, and the question of whether the modification would improve parsing performance for a
particular grammar has to be investigated empirically. We suspect that Carroll’s modifications, had
they been implementable for GLR*, would have had little affect on the performance of the parser
in the context of the applications investigated in this thesis.

The above complexity analysis has shown that the time complexity of GLR* with respect to
input length is identical to that of the original GLR parsing algorithm. In fact, GLR* and GLR
differed in complexity only in the DISTRIBUTE-SHIFT, SHIFT and MERGE steps, which are
not the dominant components in the complexity of an entire stage. Thus, these differences became
insignificant in the overall complexity of the algorithms.

At first glance, this result may seem surprising. Since GLR and GLR* both have a time
complexity of ��	�
 ��� 1 � , the asymptotic running time of GLR* is guaranteed to be slower than that
of GLR by no more than a constant factor.

However, several important points should be noted to put this complexity result in its proper
context:

1. The above complexity analysis was conducted on only the recognition aspect of the algorithm.
As it turns out, taking into account the operations required for producing parses in both GLR
and GLR* does not affect the time complexity results, since neither GLR nor GLR* produce
parse trees, but rather represent the set of analyzed parses in a packed parse forest. Thus,
even though GLR* may find an exponential number of parsable subsets for a given input
string, these parses are implicitly represented in the packed forest in a compact way.

2. The determined complexity bound is a worst case analysis. The result by itself does not
preclude the possibility of a substantial difference in runtime between GLR and GLR* on
particular inputs or even on average inputs with specific grammars. It is thus possible that
while GLR is extremely efficient for particular grammars or classes of grammars, GLR*
performs much worse on the same grammars.

3. Since the above analysis related runtime as a function of only the length of the input string,
the “constant” ratio between the asymptotic runtime of GLR and GLR* may in fact be
dependent on properties of the grammar. It is thus important to look at the complexities of
both algorithms as a function of the size of the grammar as well.

Complexity with Respect to the Grammar Size

As already noted, Johnson [39] demonstrates that for a particular class of grammars !�1 , there are
inputs for which the GLR parsing algorithm operates in time that is Ω 	�2 3 5 6 7 5>
 � . This shows that
GLR has in fact a non-polynomially-bound runtime with respect to the size of the grammar.

The most important way in which the grammar affects the runtime performance of both GLR
and GLR* is indirectly via the number of states in the parsing table that is pre-compiled from the
grammar. It is interesting to observe that the class of grammars Johnson uses in his analysis is one
where the number of states in the parsing table is exponentially related to the grammar size. The
class ! 1 is defined such that where ;�! 1 ;@?A��	�B 2 � , the number of states in the corresponding
parsing table is ��	 2 1 � . Additionally, the class of grammars that Johnson uses has the property that
when parsing an input of the form CED (for 
GFHB ), at the end of each stage � of the parsing (for

48



�IFJB ), the GSS contains Ω 	 2 1 � active state nodes. Stage � of the parsing also requires Ω 	 2 1 �
reduce operations to be performed, which results in the observed time bound.

The time bound for GLR* on this same example will, of course, be greater or equal to that
found for GLR. The number of active state nodes at stage � of the algorithm remains Ω 	 2 1 � , but
the total number of reduce operations performed at stage � is Ω 	�� 2 D � . This results in a total runtime
of Ω 	�2 3 5 6 7 54
 2 � for this class of grammars.

Johnson’s example thus shows that both GLR and GLR* have a non-polynomial runtime bound
with respect to the size of the grammar, but does not provide much insight into the actual differences
in runtime behavior between the two algorithms on common practical grammars. However, the
analysis of the example does provide some insight on the effect that the number of active state
nodes at each stage (and the number of reduce operations from these active nodes) have on the total
parsing runtime. Actual runtime evaluations using practical natural language grammars, which we
present in the next subsection, indeed show that while for GLR, the number of active state nodes
and reduce operations per stage is on average very small, for GLR* these numbers grow very
quickly. As a result the runtime performance of the two parsers quickly diverges in practice.

3.5.2. Runtime Performance of Unrestricted GLR*

The complexity analyses presented in the previous subsection provided us with very limited insight
into the expected actual time and space performance of the GLR* parser. I therefore conducted
experiments to evaluate the time and space behavior of the unrestricted GLR* algorithm in a
practical setting.

The Evaluation Benchmark

For the purpose of evaluating the time and space performance of the GLR* parser, I selected a
benchmark setting from the JANUS speech-to-speech translation project, a “real world” setting in
which GLR* is currently being used. The benchmark was constructed from the JANUS English
Spontaneous Speech Translation (ESST) domain, which handles spontaneously spoken English
dialogs between a pair of two people attempting to schedule a meeting.

The grammar used in these evaluations is the November-94 version of the ESST GLR Grammar
developed by Keiko Horiguchi for the JANUS Project. The grammar contains 805 rules which
compile into a GLR parsing table of 987 states.

The data set used for the benchmark is a subset of the ESST development set data. The
development set data consists of transcribed text of actual recorded dialogs, where the parties
attempted to schedule a meeting. The transcribed utterances are broken into sentences. The
development set was then used to incrementally construct a wide coverage English grammar for
the domain, which resulted in the above mentioned grammar. The benchmark data set appears
in Appendix B. It contains 552 sentences from the ESST development set. Table 3.2 shows the
sentence length distribution of the benchmark data set.

Time and Space Performance of Unrestricted GLR*

Using the benchmark setting described above, I conducted an evaluation of the time and space
performance of the unrestricted GLR* parser as well as the original GLR parser. Loaded with the
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Sentence
Length 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of
Sentences 119 31 25 45 57 50 41 38 31 32 27 17 15 12 12

Table 3.2 Sentence Length Distribution of Benchmark Data Set

benchmark grammar, the parser was run on the entire set of 552 input sentences. The experiment
was conducted on an HP-735 Apollo workstation running HP-Lucid Common Lisp.

The parser was run twice in two different configurations. In the first configuration, performance
data was collected on unrestricted GLR*. Therefore, the parser was allowed unrestricted word
skipping. In the second configuration, performance data was collected with the parser’s word
skipping disabled. This configuration is equivalent to using the original GLR parser.

To evaluate time performance, actual parse times were measured. To evaluate space perfor-
mance, the total number of GSS parse nodes created in the course of parsing each sentence was
measured. The parse times and node counts were then averaged for each sentence length.

The average parse times and parse node counts for each of the sentence lengths are shown in
Figure 3.12 and Figure 3.13 respectively.

Discussion

As can immediately be seen from the time and space performance figures, the time and space
behavior of the unrestricted GLR* parser diverges very rapidly from that of GLR, and becomes
infeasible for even sentences of medium length. Whereas GLR time and space requirements
increase roughly linearly as a function of the sentence length, thus achieving an almost best
possible performance, the performance of unrestricted GLR* appears to be similar to that predicted
by the worst case complexity analysis presented earlier in the chapter.

We may thus conclude that the unrestricted GLR* parser is infeasible to operate in actual
real-world scenarios, and that severe restrictions on the word skipping behavior of the parser must
be added to the parser in order to achieve acceptable levels of performance, that will allow the
feasible use of GLR* in practical applications.

3.6. Controlling Parser Search
The unrestricted GLR* algorithm that we have described so far computes parses of all parsable
subsets of the original input string, the number of which can be exponential in the length of the
input string. As we discovered in the previous section, the computational cost of finding all possible
parsable subsets of the input can become infeasible, when working with a reasonably large natural
language grammar. However, if we are primarily interested in only maximal or close to maximal
parsable subsets of the input string, it is possible to dramatically cut down the computational cost
by using effective heuristic search techniques. This section describes two different heuristic search
techniques that I have developed for the GLR* parser, and analyzes their effectiveness in finding
the desired maximal parses, while cutting down the computational cost of running the parser.
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In order to develop effective search strategies for the GLR* parser, we must first define the
notion of a search space in which the parser is operating. Similar to the underlying GLR parser,
GLR* can be viewed as a non-deterministic parser. Whereas the non-determinism of GLR was
represented in the form of the multiple actions defined in the parsing table, GLR* has an additional
source of non-determinism - the choice of input words that are skipped. However, these two sources
of non-determinism can be viewed in a uniform way. For each specific parse produced by GLR*,
there is a unique sequence of actions that the parser performed in the process of deriving the parse.
This one-to-one correspondence implies that restricting the set of actions that the GLR* parser
performs at each step of the parsing process, corresponds to a similar restriction on the set of parses
produced by the parser. Thus, the search for a particular parse or set of parses corresponds to a
search for the particular sets of parsing actions that produce the desired parses.

This leads to the following notion of a search space. The GSS of the parser at each step of the
parsing process can be viewed as a “state” of the search space. The various possible parsing actions
can be viewed as the “operators” that transform the parser between states. A search strategy that
operates within this notion of a search space would be one that effectively limits the set of operators
(i.e. parsing actions) being applied at each step as much as possible, while still pursuing those
actions that lead to a desired “goal” state (i.e. the desirable parse or set of parses).

Based on the above notion of the parser search space, I developed and experimented with two
heuristic search techniques that limit the sets of parsing actions that are considered by the parser at
each step of the parsing process. These search heuristics are aimed at restricting the word skipping
behavior of the parser, and are not designed to resolve parse ambiguity. Therefore, no attempt is
made to prune out actions that are a result of multiple entries in the parsing table.

The following two heuristic search techniques were developed. The details of each of the
heuristic methods are described in the following subsections.

1. The k-word Skip Limit Heuristic: The parser is restricted to skip no more than � consecutive
input words at any point in the parsing process.

2. Beam Search Heuristic: The parser is restricted to pursue a “beam” of a fixed size � of
parsing actions. Parsing actions are selected according to a criterion that locally minimizes
the number of words skipped.

3.6.1. The K -word Skip Limit Heuristic

The simpler of the two heuristics is the � -word skip limit heuristic. The idea behind this heuristic
is to limit the parser to skipping at most � consecutive input words, where the parameter � can be
set to any desired value prior to runtime.

The heuristic is implemented in the GLR* parser in a straightforward way. A “level” field
is added to each state node of the GSS, representing the position in the sentence of the word
being processed when the state node was created. When shift actions are distributed in the
DISTRIBUTE-SHIFTS step, the level field of each state node is compared with the level of the
current word being shifted. Shift actions are then distributed only to state nodes with a level that is
of distant � or less than the current level.

The value of the parameter � can be set by the user at runtime, prior to parsing an input. Setting
the value of � to 1 is equivalent to completely disallowing any word skipping, in which case GLR*
behaves exactly like the original GLR parser. Setting the value of � to a value equal or greater
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than 
 - the length of the sentence - is equivalent to disabling the heuristic, since all possible word
skipping combinations will be considered.

Using this heuristic (with � set to a value less than the length of the input sentence), GLR* is no
longer capable of finding all parsable subsets of the original input, since it can only find parsable
subsets that do not require skipping more than � consecutive words. The heuristic is thus effective
in cases where a reasonably small setting of � , which results in a significant cut in the number
of shift actions distributed by GLR* in DISTRIBUTE-SHIFT steps, is sufficient for finding the
desired maximal parsable subset of the input. Empirical results of using this heuristic are presented
in a later subsection.

3.6.2. The Beam Search Heuristic

The beam search heuristic is a heuristic in which the parser is restricted to pursue at each step a
“beam” of a some size � of parsing actions. Whenever there are more than � alternative actions,
the heuristic must select the “best” � actions that are to be pursued, according to some pre-designed
criterion. In the case of the GLR* parser, an appropriate criterion would be one that attempts to
minimize the overall number of words skipped.

A direct way of conducting a beam search would be to limit the number of active state nodes
pursued by the parser at each step, and continue processing only active nodes that are most promis-
ing in terms of the number of skipped words associated with them. However, the structure of the
GSS makes it difficult to associate information on skipped words directly with the state nodes. This
is due to the fact that nodes of equal states from different sub-parses are merged. Thus, a state node
may be common to several different sub-parses, with different skipped words associated with each
sub-parse.

We therefore use a somewhat different heuristic that has a similar effect. Since the skipping
of words is the result of performing shift operations from inactive state nodes of the GSS, our
heuristic limits the number of inactive state nodes to which shift actions are distributed in the
DISTRIBUTE-SHIFT step. This is similar to the � -word-skip-limit heuristic, but the criterion
for deciding which shift actions to distribute is different. With the beam search heuristic, shift
actions are first distributed to the active state nodes of the GSS. This corresponds to no additional
skipped words at this stage. If the number of distributed shift actions at this point is less than the
preset constant � (the “beam-width”), shift actions are distributed to inactive state nodes as well.
Inactive states are processed ordered by their level, so that shift actions from more recent state
nodes (with higher levels) that result in fewer skipped words are considered first. Shift operations
are distributed to inactive state nodes in this way until the number of shifts distributed reaches � .

The advantage of using the beam search heuristic versus the � -word-skip-limit heuristic is in
it’s dynamic flexibility. With the beam search, by distributing just enough shift actions in order to
fill the beam, the parser dynamically considers skipping more words in situations where there are
fewer possible sub-parses to pursue. If, on the other hand, at some step the distribution of shifts
actions to active state nodes already fills the beam, then no words will be skipped at this point in
the parsing process.

Experiments we conducted with the beam search heuristic suggested a few minor modifications
to the heuristic. First, we changed the heuristic so that shift action are distributed to all possible
active state nodes, even when the number of such actions exceeds the beam-width. Thus, the GLR*
parser pursues at least all possible parses that do not require any skipping at all. Additionally,
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whenever shift actions cannot be distributed to any active state nodes, the first level of nodes to
which shift actions can be distributed is treated as if it were the “active” level, and shift actions are
distributed to all possible state nodes of that level. Thus, in situations where the parser must skip
over a sequence of words in order to be able to continue, it will consider all possible parses that
arise from skipping this particular sequence of words.

The beam-width parameter � can be dynamically set to any constant value at runtime. Setting
the beam-width to a value of 0 disallows shifting from inactive states all together, which is equivalent
to using the original GLR parser. Empirical results of using the beam search heuristic are presented
in the next subsection.

3.6.3. Empirical Evaluation of the Search Heuristics

In this section we evaluate the two search heuristics described above on actual data. Both described
search heuristics are controlled by parameters that restricts the word skipping behavior of the
parser, and thus limits the search. In the case of the � -word skip limit, the parameter is � , the
maximum number of consecutive words allowed to be skipped. With the beam search heuristic,
the beam-width parameter controls the amount of word skipping allowed.

There exists a direct tradeoff between the amount of search (and word skipping) that the parser
is allowed to pursue and the time and space performance of the parser itself. If the control parameter
is set too low, the best parse for a given input may not be found, if the search heuristic prohibits
the parser from skipping the complete set of words that need to be skipped. On the other hand,
if the parameter is set unnecessarily high, the parser will needlessly consider many more word
skipping possibilities than is actually necessary for finding the best parse. This results in a needless
slowdown in parser performance.

The goal is therefore to determine the smallest possible setting of the control parameters that
still allows the parser to find the desired parses in an overwhelming majority of cases. The actual
“optimal” setting of the control parameter thus depends on the actual amount of skipping that is
required by the data itself. This is influenced by various characteristics of the data, such as the
domain, the form of the input (i.e text, transcribed speech, output from a speech recognizer, etc.)
and the amount of noise in the input. Also influential are properties of the grammar being used.
For example, a larger grammar may require a higher setting of the beam-width parameter, in order
to achieve some desired amount of word skipping.

Time and Space Behavior

We now look at some empirical evaluations of parser behavior with different settings of the search
control parameters. Both runtime and space are considered. These evaluations were conducted
using the same benchmark setting on which the unrestricted GLR* parser was evaluated, as de-
scribed earlier.

Loaded with the benchmark grammar, the parser was run multiple times on the benchmark set
of 552 input sentences. With each run, the parser’s control parameters were set differently. We
experimented with several settings of the skip word limit parameter, and with several settings of the
beam-width parameter. Although it is possible to combine the effects of both control parameters
simultaneously, this was avoided in this evaluation. As before, the experiment was conducted on
an HP-735 Apollo workstation running HP-Lucid Common Lisp.
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The time and space performance of the GLR* parser, with various settings of the skip word
limit parameter, can be seen in Figure 3.14 and Figure 3.15 respectively. Similarly, the performance
with various settings of the beam-width parameter can be seen in Figure 3.16 and Figure 3.17.

Discussion

As could be expected, time and space requirements of GLR* increase as the control parameters
are set to higher values. This increase however is gradual, and in the case of the beam parameter,
even with considerably high settings, parser performance remains in the feasible range, and does
not approach the time and space requirements experienced when running the unrestricted version
of GLR*.

A comparison of the performance figures of the two heuristic control mechanisms reveals the
clear advantage of using the beam search, versus the simpler skip word limit heuristic. With the
skip word limit heuristic, time and space requirements increase rather rapidly. Even with a setting
of just one (i.e. no more than a single word can be skipped between any two parsed words), parse
time increases to more than double that of the original GLR parser, on input sentences of length
10 or more. This is roughly comparable to using a beam-width value of 30. Using a skip word
limit of 2 already results in parse times that are unacceptably long for sentences of length 10 and
up. However, experiments in using GLR* within the JANUS project have shown that a skip word
limit of at least 2 is necessary to achieve even moderate benefits from using GLR* on parsing
spontaneous speech. On the other hand, using the beam search heuristic, we have achieved similar
increased performance when setting the beam-width as low as 10. The flexibility that is built into
the beam search heuristic that allows the parser to skip over a different number of words at various
points in the parsing process is at the core of this result.

As mentioned earlier, determining the optimal setting of the beam-width parameter is a task that
depends on many different factors. This optimal setting may thus differ widely from task to task. It
is plausible that there are tasks where in order to achieve reasonable increased parsability from the
GLR* parser, the beam-width parameter would have to be set to such high values where parser time
and space performance degrades to unacceptable levels. However, in the practical applications in
which we have tested the GLR* parser so far, this has not proven to be the case.
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Figure 3.14 Time Performance of GLR* with Various Skip
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Chapter 4

Statistical Disambiguation

4.1. Introduction

Wide coverage practical natural language grammars often produce large numbers of grammatical
analyses for a given input. This is due partly to inherent structural ambiguities in natural language,
and partly to the fact that it is difficult to integrate semantic interpretation directly into the parsing
process, in a way that would limit the resulting analyses to only a small set of semantically
plausible ones. Thus, many natural language understanding systems are designed in a way where
semantic interpretation is performed by a separately designed module, which is applied on the set
of grammatical analyses produced by the parser. Such a module can then select a particular parse
analysis that translates into the most plausible interpretation, and may take advantage of additional
sources of knowledge, such as the discourse.

The amount of post parser work required can be cut down considerably if the parser can be
trained to identify and prune out grammatical analyses that are “unlikely” to produce a meaningful
interpretation, or at least to rank the set of grammatical analyses according to such measures of
likelihood. It is primarily for this reason that probabilistic parsing and statistical disambiguation
methods have received much attention in recent years.

The abundance of parse ambiguities for a given input is greatly exacerbated in the case of the
GLR* parser, due to the fact that the parser produces analyses that correspond to many different
maximal (or close to maximal) parsable subsets of the original input. It is therefore imperative that
the the parser be augmented with a statistical disambiguation module, which can assist the parser
in selecting among the ambiguities of a particular parsable input subset. We will later see how
the statistical disambiguation module can be useful in ranking analyses that correspond to different
parsable subsets of the input (see Chapter 5).

This chapter describes a newly developed statistical disambiguation module, designed to aug-
ment the unification-based versions of both the GLR and GLR* parsing systems. After reviewing
the major current approaches to probabilistic parsing and statistical disambiguation, we describe
the statistical framework upon which our disambiguation module is based. Our statistical disam-
biguation method is similar in principle to a method proposed by Carroll [11], where probabilities
are associated directly with the actions of the parser, as they are defined in the pre-compiled LR
parsing table. At runtime, these probabilities are used to induce probabilities on the various analy-
ses considered by the parser. We then describe the training procedures for collecting the necessary
statistical data for a particular grammar. The probabilities of the various actions in the LR parsing
table are estimated from a corpus of disambiguated parses. Next, we describe how the collected
statistical data is used in order to disambiguate among the various analyses produced by the parser
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at runtime. Finally, we present the results of an evaluation of the performance of the statistical
disambiguation module on several different grammars.

4.2. Previous Work

4.2.1. Principle-based Methods

Several different principle-based disambiguation methods have been investigated in the literature.
The most well known of these are Right Association and Minimal Attachment.

According to the principle of Right Association [44] [20] [67], it is preferable to attach a
terminal symbol to the lowest right-most non-terminal node to which it can attach. This has the
effect of grouping the terminal symbol with those immediately to its left. For example, in the
sentence “John said he saw Mary yesterday”, the preference is to attach the adverb “yesterday” to
the verb “saw” and not to the the verb “said”.

The principle of Minimum Attachment [44] [20] [67], on the other hand, prefers to attach a
terminal symbol into a parse tree with the fewest possible number of new non-terminal nodes linking
it with the nodes already in the tree. This disambiguation criterion is thus dependent on the way
the particular grammar was written, and different grammars will disambiguate differently based
on this principle. Nevertheless, with reasonable grammatical descriptions, Minimal Attachment
has been shown to correctly disambiguate various types of ambiguities. Right Association and
Minimal Attachment can at times be in conflict, each prefering a different ambiguity.

Right Association, Minimal Attachment and other principle-based disambiguation methods
primarily attempt to explain the underlying rules used by humans in sentence comprehension
and disambiguation. These methods can then be applied to perform similar disambiguation tasks
in computational environments. Gibson [25] describes how these and other properties can be
combined into a partially unified theory of human sentence comprehension.

4.2.2. Statistical Language Models

The surge in work on probabilistic parsing methods in the last decade can be attributed to a large
extent to major technological advancements in the area of speech recognition. Statistical language
models have proven to be effective tools in many speech recognition systems. Such speech systems
usually consist of two major components. The first is an acoustic component that matches the
acoustic input to word models in its vocabulary. It produces a set of the most plausible word
candidates, each associated with a probability. The second component of a speech recognition
system is a language model, which given a list of previously hypothesized words, determines the
probability of a word occurring next. Accurate language models are essential to the performance
of the speech system.

One particular acoustic modeling method that has received much attention in recent years is
Hidden Markov models (HMMs). An HMM is a finite state automaton (FSA) augmented with
a set of state transition probabilities, and a set of state output probabilities. Speech systems use
HMMs to model the acoustic signals produced by the process of human speech. These models
can then be used to probabilistically reconstruct word candidates given the acoustic data. The two
most important algorithms required for this reconstruction are the Viterbi algorithm [100], and the
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Baum-Welch algorithm [7]. The Viterbi algorithm provides an efficient solution to the problem of
finding the most probable state transition sequence for a given input and HMM. The Baum-Welch
algorithm is an iterative procedure for re-estimating the probabilities of an HMM, in order to best
account for a corpus of training data. A good overview of HMMs, the Viterbi and Baum-Welch
algorithms, and their applications in speech recognition can be found in Rabiner [80].

Traditionally, simple statistical models, known as n-grams have been used for the language
model component of the speech system. With an n-gram model, the probability of a word occurring
next is estimated based on the 
ML 1 previous words. The simplest of these models is the bigram
model, where this probability depends solely on the preceding word. Although the probabilities of
n-gram models can be acquired and calculated from large training texts, these models are limited
in their accuracy. The number of parameters that need to be estimated for trigrams and higher
n-grams is enormous and may greatly exceed the size of the available text corpora. This can result
in an inadequate model due to sparse data. Various methods have been proposed to deal with this
issue [42] [13] [22] [49], with some degree of success. However, n-grams model the language
on a superficial level, that captures very little of the linguistic constraints typical of any natural
language.

N-gram models have also been used for other natural language tasks. Church [13] developed
a probabilistic program for automatically tagging the words of input sentences into their parts of
speech. The program uses gathered statistical information on part of speech trigrams and a dynamic
programming technique to determine the part-of-speech tags most probable for a given input
sequence of words. Church also presents a probabilistic method for determining the boundaries of
noun phrases with high accuracy, using a stochastic analog of precedence tables. Along the same
lines, work by Brill et al [9] uses distributional analysis on part of speech n-grams to determine
constituent boundaries.

Statistical language models such as n-grams may be viewed as a way in which distributional
analysis serves as an alternative to unavailable more sophisticated and detailed knowledge (syntac-
tic, semantic or pragmatic) about the language. Probabilistic parsers, therefore, offer a potential for
a higher degree of accuracy, since the structure of the language is modeled directly by a grammar,
while the distributional analysis can still take the place of unavailable semantic and pragmatic
knowledge.

4.2.3. Parsing with Probabilistic Context-Free Grammars

A probabilistic context-free grammar (PCFG) is a CFG, where the frequency of occurrence of
grammatical phenomena has been modeled by assigning probabilities to the rules of the grammar.
If this process is done in a consistent way, it induces a probability distribution on the sentences
of the language defined by the grammar. More importantly though, it induces a probability distri-
bution on the various derivations of a particular grammatical sentence, and can thus be used as a
disambiguation method.

Supervised and Unsupervised Training Methods

One possible way of estimating the rule probabilities of a PCFG is by using a corpus of disam-
biguated parses. The frequencies of occurrence of the rules in the correct (disambiguated) parses
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can be determined from the corpus. These frequencies can then be normalized into rule probabil-
ities. This method can produce accurate rule probability estimates when trained on a sufficiently
large corpus of disambiguated parses. The major problem with this supervised training method
is that the process of constructing a sufficiently large corpus of disambiguated parses can be very
labor intensive.

As an alternative to the supervised training method, an unsupervised efficient version of the
Baum-Welch algorithm has been developed for PCFGs [37] [54], where the grammar is restricted to
being in Chomsky Normal Form (CNF), and using the CKY parsing algorithm [112]. This iterative
training algorithm, also known as the Inside-Outside algorithm, works in the following way. Each
sentence is parsed, and all possible analyses are produced. A probability is then computed for
each analysis, using the rule probabilities from the previous iteration. Instead of counting the
occurrences of the grammar rules in only the correct parse of each of the sentences, the frequency
of occurrence of the grammar rules is estimated by counting their occurrence in all analyses, each
weighed by the probability of the analysis. The estimated frequencies are then normalized into a
new set of rule probabilities, and the entire process is then repeated.

After a bounded number of iterations, the Inside-Outside algorithm is guaranteed to converge
to a local optimum that maximizes the probability of the training corpus. However, there is no
guarantee that a global optimum will be found, and the initial probabilities chosen for the rules of
the grammar have a crucial influence on the converged probabilities [54]. Although the resulting
rule probability estimates can be skewed due to bad initial values and having been trained on
incorrect as well as correct parse analyses, the Inside-Outside method has the great advantage of
being unsupervised, in the sense that it does not require a disambiguated training corpus.

Recent Work on PCFGs

There have been several works on parsing with PCFGs in recent years. Fujisaki et al [21] describe
an experiment in which a PCFG was used as a disambiguation method. The grammar contained
7550 rules in CNF. The rule probabilities were determined using the iterative Inside-Outside method
on a corpus of 4206 sentences. The collected statistics where then used to disambiguate sentences
with multiple analyses, by selecting the analysis with the highest probability. This is done using
a version of the Viterbi algorithm [37], which can find the 
 most likely parses of a given input
sentence. Evaluation was manually performed on a set of 84 sentences drawn from the original
training set. In 72 out of the 84 sentences (85%), the most probable analysis was the correct one.
Of the remaining 12 sentences, in 6 cases none of the analyses found by the parser was correct,
while in the other 6 cases, the correct analysis was not the most probable one.

Corazza et al [16] discuss how to compute the probabilities of partial strings and substrings
of sentences derived from a PCFG. They also describe how such probabilities can be used in
conjunction with an island-driven probabilistic parser to score alternative acoustic hypotheses
produced by a speech recognition system.

Schabes and Waters [84] introduce stochastic lexicalized CFGs (SLCFGs), a context-free ver-
sion of stochastic lexicalized tree-adjoining grammars, and present algorithms for parsing, training
of the probabilities and recovering the most probable parse of a given input for these kinds of
grammars. The main advantage of using SLCFGs is their lexical sensitivity, which provides them
with a better basis for capturing distributional information about words.
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GLR Parsing with Probabilistic CFGs

Several works have looked into the issue of how to integrate the computation of probabilistic
information into the process of parsing with a GLR parser. The GLR parsing strategy can be applied
to a probabilistic context-free grammar if the parser generator can convert the rule probabilities
into a form suitable for the action table and consistent with the way the probabilities of the rules
multiply in a derivation. Wright and Wrigley [110] demonstrate how this can be done for the
various types of LR table construction methods for grammars without left recursion.

The probabilities assigned to the actions in the parse table must ensure that the product of the
probabilities of the parsing actions that correspond to a particular parse tree is identical to the
probability that would be assigned to the parse tree directly by the PCFG. At run time, probabilities
must be associated with the partial parses in the GSS data structure so that the final parse tree
probabilities can be computed incrementally in a compositional way. Also, partial parses with
probability below a certain threshold can be discarded. Wright, Wrigley and Sharman [109]
deal with some of these technical issues. They also describe how to efficiently find the most
probable analyses of a given input string. Some additional techniques of how to efficiently handle
a probabilistic version of the GSS, and a method of dealing with left-recursive grammars were
developed by Ng and Tomita [75].

Wright [108] describes how probabilistic input, such as that originating from a speech recog-
nizer can be handled in the context of the probabilistic version of the GLR parser.

None of the above mentioned works describes any large scale empirical evaluation of using
PCFGs in the context of GLR parsing, for either statistical disambiguation or parsing of input from
a speech recognition system.

4.2.4. A Refined Probabilistic Model for GLR Parsing

Carroll [11] identifies several problems with PCFGs, and proposes a refined probabilistic model for
GLR style parsers, that can better address some of these problems. The main problem with PCFGs
is that the probabilities are modeled on the level of the context-free rules. Thus, the probabilities
can reflect a general preference for expanding a non-terminal � using a rule �N0 O versus some
other rule �P0 Q . However, there is no way to probabilistically capture the dependency of such
preferences on the context in which the rule is being applied. As an example, Carroll looks at rules
that expand noun phrases (NPs). Although it has been shown that a noun phrase is more likely to be
expanded into a pronoun when occurring in the subject position of a sentence rather than anywhere
else, this fact cannot be captured by a PCFG, since the relevant rule has a single global probability
assigned to it.

Carroll then makes the observation that LR parsers implicitly encode some partial contextual
information in their states. Therefore, if probabilities are modeled directly at the level of LR states,
certain contextual preferences will be reflected in the modeled probabilities. For example, in the
case of the noun phrases, the parser is in one state when encountering the NP in the subject position,
and in another state when it encounters an NP in the object position. Therefore, by having the
probabilities depend on the state of the parser, the preference for expanding an NP into a pronoun
when it occurs in the subject position can potentially be captured through the modeled probabilities
of the various states.
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Carroll proceeds to propose a refined probabilistic model for GLR parsers, where probabilities
are associated directly with the actions of the parser, as they are defined in the pre-compiled parsing
table. The parsing table is viewed as a non-deterministic finite state machine. Each parse tree
that can be produced by the parser has a one-to-one correspondence to a particular sequence of
transitions in the defined finite-state machine. Therefore, the probability of an analysis can be
computed from the probabilities of the sequence of transitions performed in the course of obtaining
the analysis.

Carroll proposes using a supervised method for training the probabilities of the LR table actions.
For this purpose, a corpus of disambiguated parses must be collected. In Carroll’s system, this task
is performed using an interactive version of parser, which operates using the very same grammar
for which probabilities are to be trained. The interactive parser requires the user to make choices
at points where the parser has more than one possible alternative action. Using some sophisticated
lookahead techniques, Carroll manages to resolve many of these choice points automatically and
thus eliminate a fair amount of necessary interaction with the user.

The corpus of disambiguated parses is used to directly compute the probabilities of the various
actions in the LR parsing table. Carroll then describes the probabilistic version of his GLR parser,
and deals with the issues of the construction of a probabilistic parse forest, and the process of
probabilistic unpacking to retrieve the analysis with highest overall probability. Since the statistical
framework of our GLR parsing system is very similar to that of Carroll, these issues are covered in
detail in the following section, and both the similarities and differences of the two approaches are
made explicit.

The experimental evaluation of Carroll’s system was conducted on a test corpus constructed
from a subset of noun definitions from the Longman Dictionary of Contemporary English (LDOCE).
The definition sentences are on average 10 words long. 150 definitions were used for training,
for which a disambiguated parse corpus was constructed using the interactive GLR parser. The
action probabilities were calculated from the disambiguated parses. The training corpus was then
reparsed with the probabilistic GLR parser, and the probabilistically highest ranking analysis of
each definition was compared with the correct analysis taken from the disambiguated corpus. 3 of
the 150 sentences could not be parsed with probabilistic parser. Of the parsable 147 sentences, the
highest ranked analysis matched the correct analysis in 99 cases, which amounts to a success rate
of 67%. On sentences of length 10 or less, the success rate is 76%. On a separate test set of 55
additional definitions of length 10 or less, a similar success rate of 75% was observed.

4.3. The Statistical Framework
The statistical framework that we use in our statistical disambiguation module is very similar to
the one developed by Carroll [11], that was described in the previous section. In this section we
describe this framework in detail.

Similar to Carroll’s approach, we attach probabilities directly to the alternative actions of each
state in the pre-compiled LR table. Because the state of the LR parser partially reflects the left
and right context of the parse being constructed, modeling the probabilities at this level has the
potential of capturing contextual preferences that cannot be captured by PCFGs. For example, a
reduce action by a certain grammar rule �R0 O that appears in more than one state can be assigned
a different probability in each of the occurrences.
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However, as Carroll notes, assigning a single probability to each reduce action per state does
not make maximal use of the context encoded in the LR table. To a great extent, the context in
which the reduction occurs is reflected via the goto state, the state reached after the reduction has
been applied. The goto state is deterministically defined by the state recovered from the stack
after popping the right-hand side of the rule, and by the rule’s left-hand side non-terminal symbol.
The goto state can distinguish, for example, whether a rule such as SUTV0 �XW4Y4
ZY4[
 occurs in
the subject or object position of a sentence. It is therefore highly advantageous to refine the
probabilities attached to reduce actions, and subdivide them according to the goto state. This is
particularly true of the LR(0) tables used in the GLR and GLR* parsers, since reduce actions in
LR(0) tables are not divided according to any lookahead.

Table 4.1 shows a probabilistic version of the parsing table constructed for the grammar in
Figure 3.2. Due to the fact that this is a “toy” grammar, the probabilities in this table were not
collected from an actual corpus and are shown merely for demonstration purposes. Note that the
probability of a reduce action is divided among the possible goto states following the reduction.
The “Goto” part of the parsing table is deterministic, and is therefore not displayed.

The refined approach just described corresponds to associating probabilities with the transitions
of the finite-state automaton defined by the LR table, instead of just the actions defined in the action
part of the LR table. This leads to a probabilistic model that views the LR table as a probabilistic
finite-state machine.

In a finite-state probabilistic model, the probability of a particular transition is dependent solely
upon the current state. Therefore, for each state, the sum of the probabilities of all possible
transitions must add up to one. Because the probability of a transition depends only on the current
state, the probability of a sequence of actions of the finite-state machine is simply the product of the
individual action probabilities. This defines a probability space on the set of all possible transition
sequences that originate from the start state of the machine. Because the graph of transitions of
the finite-state machine can contain cycles1, this set of transition sequences is likely to be infinite.
In the resulting probability space, the sum of the probabilities of all possible transition sequences
adds up to one.

It is important to note that modeling the parser as a probabilistic finite-state machine is an
over-simplification. In reality, parser actions are dependent on more than just the current state. The
current stack content, as well as the next input word restrict the set of possible transitions from the
current state to a subset of the entire set of possible transitions. However, this model appears to be
detailed enough to capture many of the structural preferences of the language, yet simple enough
to enable reasonably adequate training of the probabilities from available corpus data.

Parse Disambiguation Using the Finite-State Model

We have yet to describe how the above finite-state probabilistic model can be used to disambiguate
parses. Due to the way GLR parsers operate, there is a one-to-one correspondence between every
parse tree that can be produced by the parser and a particular sequence of transitions in the defined
finite-state machine. This allows us to associate the probability of the transition sequence with
it’s corresponding parse tree. Alternative analyses of a particular grammatical input sentence are

1Note that the LR table constructed for a grammar that generates an infinite language will necessarily correspond to a
finite-state machine with cycles.
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Reduce Shift
State det n v p $
0 sh3 (.87) sh4 (.13)
1 acc (1.0)
2 sh7 (.68) sh8 (.32)
3 sh9 (1.0)
4 r3 (2 .36)

r3 (10 .53)
r3 (11 .11)

5 r1 (1 1.0)
6 r4 (2 .18)

r4 (10 .45)
r4 (11 .37)

7 sh3 (.77) sh4 (.23)
8 sh3 (.62) sh4 (.38)
9 r2 (2 .40)

r2 (10 .32)
r2 (11 .28)

10 r5 (5 .74) sh8 (.26)
11 r6 (6 .69) sh8 (.31)

Table 4.1 Probabilistic Parsing Table for Grammar in Figure 3.1

manifested via a set of possible parse trees. Each possible parse tree will correspond to a different
sequence of transitions, from which it can inherit a probability. These probabilities can then be
used for disambiguation.

Because we use a finite-state probabilistic model, the action probabilities do not depend on the
given input sentence. The relative probabilities of the input words at various states are implicitly
represented by the action probabilities. For example, a certain state may allow several different
shift actions, one for each possible next occurring input word. The probabilities attached to these
shift actions reflect the relative frequency of occurrence of the various possible words, as well as
preferences with respect to other possible actions from the state, such as reduce actions. Because the
finite-state probabilistic model assigns an actual probability to every transition sequence, transition
sequences that correspond to parses of different inputs are directly comparable. This enables us to
use the statistical parse scores as one of a set of evaluation measures for selecting among the parses
of various parsable subsets of a given input, which are produced by the GLR* parser. This topic is
discussed in detail in the next chapter.

One should note that transition sequences that correspond to parse trees have unique properties2,
and thus constitute only a subset of the set of all transition sequences. Due to this fact, the finite-
state probabilistic model does not define a probability space over the set of all possible parse trees
of grammatical sentences. It therefore does not constitute a language model - a probabilistic model

2For example, they must end in the final accepting state.
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for the language defined by the grammar. In particular, the probability of a grammatical sentence
cannot be directly computed as a probability sum over all possible transition sequences that lead to
valid parses of the sentence.

Even more importantly, the statistical score attached to a particular parse of a sentence cannot be
considered a true parse probability, since the scores over all alternative parse trees of a grammatical
sentence do not sum to one. This problem could be corrected by normalizing the scores of alternative
parses of a sentence. However, as noted by Carroll [11] (pp. 122), the task of parse disambiguation
does not necessitate a true language model. It is sufficient that the statistical information being used
reflect the underlying structural grammatical preferences. The disambiguation procedure can then
select among competing analyses, using the statistical scores as indicators of these preferences.

The success of our disambiguation method therefore depends on the degree to which the
finite-state probabilistic model has the following property:

Property 2 The Reflection Property: Statistical preferences between alternative
parse trees of ambiguous grammatical sentences can be captured by a probabilistic
finite-state model, in a way that allows the probabilities of the transition sequences that
correspond to the alternative parse trees to reflect the original grammatical preferences.

The fact that disambiguation procedures that are not based on valid language models can in
fact yield more effective results has been observed by other researchers as well. For example,
Pearl [61] and Picky [62] use disambiguation procedures in which parses are scored based on
the geometric mean of conditional probabilities of the rules that appear in the parse derivations.
Context is captured by conditioning the rule probabilities on the left and right neighboring non-
terminals in the dominating rule, as well as on the part-of-speech trigram at that point. By using the
geometric mean of the rule probabilities instead of their product, the researchers claim that their
disambiguation procedure can better handle the effects of dependency between constituents. Also,
the predisposition towards parses with shorter derivations is neutralized.

4.4. Training of the Probabilities

4.4.1. Supervised versus Unsupervised Training

We now turn to deal with the issue of how to obtain good and accurate probabilistic information
from training data. Similar to the case of PCFGs, a decision must be made whether to use a
supervised or an unsupervised training method. This decision is directly related to the question
of whether our probabilistic model must be trained on correct data obtained from a corpus of
disambiguated parses, or whether training on all possible analyses of a corpus of input sentences
can also yield meaningful statistics.

In principle, a Baum-Welch style unsupervised training procedure could be developed for the
probabilistic finite-state model. However, it is very unlikely that an iterative training procedure on
all possible analyses of a corpus of input sentences would result in useful probabilistic information.
Baum-Welch iterative re-estimation maximizes the probabilities of the sentences in the training
corpus for a given grammar. In the case of our finite-state model, the training would maximize the
sum of the probabilities of all transition sequences that correspond to analyses of sentences in the
training corpus. However, since the modeled probabilities are to be used to select the correct parse
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tree among the alternative analyses of a given input, our goal should be to maximize the probability
of the correct analysis, given a sentence in the training corpus. Baum-Welch re-estimation is not
likely to achieve this goal.

For example, assume a particular structural ambiguity is manifested in the parsing table through
a choice between a shift action and a reduce action from a particular state. Let us assume that
taking the shift action results in a correct analysis, while taking the reduce action results in an
incorrect parse tree. Training on correct parse trees of sentences in which this ambiguity occurs
should result in an overwhelming probability bias towards the shift action, since this action will
appear in all transition sequences that correspond to the correct parse trees of the ambiguous
sentences. However, if the a-priori probability of the shift and the reduce actions are the same,
these probabilities will have an equal effect on the probabilities of both the correct and incorrect
transition sequences of the ambiguous sentences. Although small initial biases, or other effects,
may tilt the re-estimated probabilities of the two actions in one way or another, there is nothing in
the Baum-Welch training method that directly encourages the creation of a probability bias towards
the correct action.

It is therefore quite evident that only a supervised training method, where the statistical infor-
mation is collected from transition sequences that correspond to correct analyses, is likely to result
in probabilistic information that can reflect structural grammatical preferences. We have therefore
developed such supervised training methods for our statistical model.

4.4.2. Obtaining a Disambiguated Training Corpus

The quality and usefulness of the statistical information in our probabilistic model depends to a
great extent on being able to train the probabilities from an adequately large and accurate corpus
of disambiguated correct parses. However, obtaining such a corpus is a tedious labor intensive
process. As other researchers have noted [11] [58], the manual construction from scratch of a large
scale database of parse trees can be an infeasible task. This is even more so in systems in which the
grammar is being incrementally developed and the actual “correct” parse trees of sentences will be
constantly changing along side with the grammar modifications. In this case, in order to train the
probabilistic model for a new version of the grammar, a new corpus of correct parse trees would
have to be constructed.

We have managed to develop some techniques that significantly alleviate these problems in
the case of the unification-based GLR parsing system. As previously described in Chapter 2, the
parsing system supports grammatical specification in an LFG framework, that consists of context-
free grammar rules augmented with feature bundles that are associated with the non-terminals of
the rules. For each context-free rule, the grammar formalism allows the specification of the feature
structure associated with a left-hand side non-terminal of the rule as a function of the feature
structures that are associated with the non-terminals on the right-hand side of the rule. The feature
structures that are computed at parse-time are attached to their corresponding parse node structures.
At the end of parsing an input sentence the parser returns a list of the top parse nodes in the parse
forest, as well as the computed feature structure associated with each of these nodes.

The feature structure associated with a node at the root of the parse forest is in fact the most
important part of the parse result. In all of the applications that have been developed using the GLR
parsing system, the grammars were designed to produce output feature structures that contain all
structural information from the parse that is required by the application.
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The correctness of a parse result in our parsing system is ultimately determined according to
the feature structure and not the parse tree. Therefore, we are primarily interested in parse dis-
ambiguation at the feature structure level. Most structural ambiguities in the grammar correspond
to ambiguities at the feature structure level as well. However, structural ambiguities that do not
produce an ambiguous feature structure are of little interest. It is therefore more appropriate in our
system to collect a corpus of sentences and their correct feature structures, as opposed to sentences
and their corresponding parse trees.

Maintaining a collection of correct feature structures has several additional advantages. In many
cases, the specification of correct feature structure output is designed in advance, and is independent
of the actual grammar development process. As a result, feature structure output is likely to be
rather stable, and the correct feature structures for the corpus of training sentences is not likely
to change much in the course of grammar development. Thus, regardless of whether the corpus
of correct feature structures is initially constructed manually from scratch, or semi-automatically
from the parse results of an early version of the grammar, once it exists, it should be fairly easy to
maintain throughout the process of grammar development.

Our primary investigated application in this thesis is the JANUS speech-to-speech translation
system (see Chapter 6). In JANUS, a large collection of sentences and their correct feature structures
was constructed for development and evaluation purposes, and was thus directly available for
training the probabilities of the statistical model. For other applications such as the ATIS domain,
we developed an interactive disambiguation procedure for efficiently constructing a corpus of
disambiguated feature structures.

Our experience has shown that choosing the correct feature structure is also much easier than
selecting a correct parse tree. This can significantly reduce the amount of manual work required for
building a collection of disambiguated parses when using the interactive disambiguation procedure.

The Interactive Disambiguation Procedure

To assist a user in building a corpus of correct feature structures, we developed an interactive
disambiguation procedure. In the context of this procedure, the GLR parser is used in a mode
in which both skipping and ambiguity packing are disabled. Skipping is disabled because we
anticipate the disambiguation corpus to consist of only grammatical sentences, which are parsable
in full. This allows the output set to consist of only the ambiguous analyses of the full input
sentence. Ambiguity packing is also disabled, so that ambiguities will not be embedded within the
feature structure, and the complete set of alternative analyses will be available at the top level.

The disambiguation procedure operates on a set of input sentences by processing them one
by one. Each input sentence is parsed by the parser. The set of all alternative feature structure
analyses is then presented to the user. If the parse was not ambiguous, the user needs only to verify
that the computed feature structure is indeed correct. If more than a single analysis was found, the
user may choose which, if any, of the set of analyses found is the correct one. If a correct feature
structure was selected, the system stores it, along with the original input sentence. If none of the
parsed analyses was correct, no information is stored.

Our interactive disambiguation procedure computes the complete set of analyses for each parsed
sentence. This method has two potential drawbacks. First, the set of all analyses for some sentences
may be very large, burdening the user with a tedious selection process. Second, producing the
complete set of analyses can be computationally expensive, particularly since no ambiguity packing
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is performed. In the applications that we have experimented with in the course of this thesis work,
neither of these two issues proved to be a serious problem.

While building a collection of disambiguated parses, the interactive disambiguation procedure
simultaneously collects statistical information required for calculating the transition probabilities
for the finite-state probabilistic model. When the user selects the correct feature structure of a
parsed sentence, a secondary procedure is called, that converts the selected feature structure into
the corresponding correct transition sequence. The method by which this is done is described in
the next subsection. Once the correct sequence of transitions is known, frequency counters for
the transitions can be updated. Statistics for the probabilistic model can then be incrementally
calculated on the partial corpus collected so far.

Using statistics collected on a partial training corpus while running the interactive disambigua-
tion procedure can further ease the process of selecting the correct feature structure. The existing
statistics are used to score and rank the set of alternative feature structures produced by the parser.
These are then presented to the user ordered by their scores. It is likely that the correct feature
structure will be found among one of the top ranking analyses, shortening the required amount of
browsing. Since the quality of the statistics should fairly monotonically improve with the size of
the training corpus, it is worthwhile to every so often recalculate updated statistics from the partial
corpus collected so far, and use the updated statistics for further enlarging the training corpus
of disambiguated feature structures. The training corpus can thus be incrementally built over a
prolonged period of time, while statistics derived from the existing training corpus can already be
utilized for disambiguation.

Carroll [11] suggests an alternative method of interacting with the parser in order to find the
correct parse. According to this method, while parsing the sentence, the user is asked to make a
choice whenever the parser encounters a point of non-determinism with multiple alternative actions.
Using some sophisticated lookahead techniques, Carroll manages to resolve many of these choice
points automatically and thus eliminate a fair amount of necessary interaction with the user. This
approach has the disadvantage of requiring the user to resolve local ambiguities that might not
appear in the final set of analyses. Furthermore, the local information available at each choice point
may not be sufficient to allow the user to easily make the correct choice.

These two disadvantages are particularly serious in our GLR parsing system. Due to the fact that
our system uses LR(0) parsing tables, our parsing system normally attempts a very large number
of reduce actions in the course of parsing a sentence. In many cases, a majority of these reductions
fail due to feature structure unification failure. As a result, the amount of interaction with the user
that would be required for on the fly action disambiguation would be far greater than that required
for post selection. We therefore chose not to pursue an approach similar to that of Carroll for our
interactive disambiguation procedure.

4.4.3. Deriving Probabilities from a Training Corpus

Once we have a corpus of input sentences and their disambiguated feature structures, we can
train the finite-state probabilistic model that corresponds to the LR parsing table. The process by
which this is done first involves accumulating counters that keep track of how many times each
particular transition of the LR finite-state machine was taken in the course of correctly parsing all
the sentences in the training corpus. After processing the entire training corpus and obtaining the
counter totals, the counter values are treated as action frequencies and converted into probabilities
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by a process of normalization. A smoothing technique is applied to compensate for transitions that
did not occur in the training data. We now describe the details of this process.

Finding the Correct Transition Sequence

In order to be able to accumulate counters for the LR table transitions, a method must be developed
by which a correct feature structure of a parsed sentence can be converted back into the sequence of
transitions the parser took in the process of creating the correct parse. This is done in the following
way.

1. The correct parse tree that corresponds to the correct feature structure is recovered.

2. The correct transition sequence is determined from the correct parse tree.

3. Frequency counters for all transitions that appear in the correct transition sequence are
updated.

In order to recover the correct parse tree, the input sentence is once again parsed, with the
parser set in the mode in which ambiguity packing is disabled. This results in a parse forest which
consists of a set of trees, each corresponding to an alternative analysis of the sentence. A matching
procedure is then used to compare the feature structure of each of the parse trees with the correct
feature structure that was stored in the training corpus. When a matching feature structure is found,
it’s corresponding parse tree is retrieved from the parse forest.

Once the correct parse tree has been found, it is converted into an action sequence that cor-
responds to the rightmost derivation in reverse performed at runtime by the parser. This is done
by a postfix procedure that traverses the parse tree. Each leaf node in the tree corresponds to a
shift action, and each final visit to an internal node corresponds to a reduce. The precise rule
being reduced can be determined from the non-terminal at the node, and the node’s direct children.
For example, consider the parse tree in Figure 4.1, constructed for the sentence “det n v det
n p det n”, according to our simple example grammar from Figure 3.2. The action sequence
corresponding to the parse tree can be seen below the parse tree. We denote the shift actions by
“sh”, while reduce actions are denoted by “r � ”, where � is the rule number.

The complete transition sequence of the LR finite-state machine can then be reconstructed via
a simulation of the parsing of the input by the parser. In this simulation, the correct actions of
the parser are deterministically determined from the recovered action sequence. All that remains
is to use the parsing table itself, starting from the start state, in order to determine the sequence
of states through which the parser moves. The goto states that are part of the reduce actions are
determined from the table using the simulated parser stack. The reconstructed transition sequence
that corresponds to our example parse tree can be seen at the bottom of Figure 4.1. It was
constructed by a simulation of the parser using the parsing table from Table 3.1. The actions are
now interleaved between the parser states. A state that follows a reduce action is the determined
goto state. The transition sequence starts in state 0, the start state, and ends in state 1, the final
accepting state, where the last action is to accept the input.

Once the transition sequence of the LR finite-state machine has been recovered, counters for
each of the observed transitions are incremented. A counter is maintained for every observed
transition from each state. Shift actions are identified according to the token being shifted and the
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Action sequence:

Transition Sequence:

0 sh3 3 sh9 9 r2 2 sh7 7 sh3 3 sh9 9 r2 10 sh8

8 sh3 3 sh9 9 r2 11 r6 6 r4 10 r5 5 r1 1 acc

Figure 4.1 A Parse Tree with Corresponding Action and Transition Sequences

shift state. Reduce actions are identified according to the number of the rule being reduced and the
resulting goto state.

Converting Transition Frequencies into Probabilities

When the process of collecting the frequencies of all observed transition sequences is complete,
the frequencies can be converted into actual probabilities for the finite-state probabilistic model.
For each state, the frequencies of all the transitions that occur from the state are converted into
probabilities, so that their sum will add up to one. This is done by normalization - the frequency
counts of all transitions from the state are added up to a total count, and the fraction of the total for
each of the transitions is calculated.
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Smoothing of the Probabilities

Even when training is done on a very large training corpus, there are likely to be many transitions
of the finite-state model that will not have been observed even once. This is particularly true when
working with large scale grammars in practical applications. The number of different transitions,
for which frequencies are to be collected, can easily reach an order of magnitude of 10,000 or even
100,000 or more.

Without any smoothing of the probabilities, a transition that was not observed even a single
time in the training corpus is effectively assigned a probability of zero. This has some undesirable
consequences on the utility of the probabilistic model when used for disambiguation. In our
investigated applications, it is quite common for the system to encounter an input sentence that
is different in structure than all sentences that occurred in the training corpus. If in the course of
parsing such a sentence, the parser performs a transition that was never observed during training,
the parse will necessarily be assigned a probability of zero, since the probability of the entire
transition sequence is the product of the individual transition probabilities, one of which is zero.
If the parsed sentence is ambiguous, and all of the transition sequences that correspond to the
ambiguities contain a zero probability transition, then all ambiguities will be assigned a probability
of zero. In such cases, our statistical model will be useless for disambiguation.

As it turns out, this is a frequently occuring problem when using the GLR* parser. The
very nature of the applications to which we apply GLR* is such that the input is likely to be
noisy and ungrammatical. As a result, the parsable grammatical subsets that are processed by
GLR* frequently create parses that did not appear in the training corpus. All such parses would
necessarily be assigned a zero probability by our probabilistic model. In a JANUS evaluation of
English analysis, conducted on an test set of unseen transcribed spontaneous speech, over 50% of
the input sentences were assigned a probability of zero as a result of this problem. Thus, smoothing
the probabilities to account for unseen transitions is extremely important.

Similar to Carroll [11], we use a simple smoothing technique, which is a variant of the Good-
Turing smoothing method [27]. Unobserved transitions are given a frequency of one. The frequency
of observed transitions is not modified. The probabilities of the various transitions is then computed
by normalization. This has the effect of assigning to an unobserved transition a probability that
is the reciprocal of the result of adding the number of unobserved transitions to the total number
of observed transitions from the state. More sophisticated smoothing techniques that have been
proposed for n-gram language models [42] [14] cannot be applied in our case due to the lack of an
appropriate back-off model and the extreme sparseness in the data.

Even so, our smoothing technique is sufficient to correct the problem of zero probabilities in a
significant number of cases. Particularly, it allows us to compute comparative probabilistic scores
for the analyses of ambiguous parses in cases where all the ambiguities would have previously
received a zero probability.

Figure 4.2 shows a small portion of the smoothed probability table for the English analysis
grammar of the JANUS project. For practical reasons, the probability table is kept separate from the
actual parsing table. The probabilities were trained from an actual corpus of disambiguated feature
structures (see the evaluation section of this chapter for details). Shift transitions are identified
by a pair consisting of the symbol “S” and the shift state. The pair is preceded by the token
being shifted. The “wild-card” token is represented by the symbol “%”. Reduce transitions are
represented by a double pair, the first of which is the word “REDUCE” followed by the number
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((0 (((% (S . 274)) 0.2958876629889669)
((I (S . 657)) 0.08926780341023069)
((WELL (S . 678)) 0.04312938816449348)
((HOW (S . 149)) 0.03811434302908726)
((LET (S . 537)) 0.033099297893681046)
((NO (S . 655)) 0.026078234704112337)
((THAT (S . 116)) 0.02106318956870612)
((*) 0.0010030090270812438))

(1 (((*) 1.0)))
(2 ((((REDUCE 1) (<START> . 1)) 0.9986244841815681)

((*) 0.001375515818431912)))
(3 ((((REDUCE 2) (<SENT> . 2)) 0.9986244841815681)

((*) 0.001375515818431912)))
(4 ((((REDUCE 3) (<SENT3> . 3)) 0.9458204334365326)

((TOO (S . 688)) 0.006191950464396285)
((THOUGH (S . 690)) 0.0015479876160990713)
((THEN (S . 691)) 0.0015479876160990713))
((*) 0.0015479876160990713))

(5 (((% (S . 274)) 0.06132075471698113)
((I (S . 657)) 0.0589622641509434)
((WE (S . 659)) 0.025943396226415096)
((THE (S . 93)) 0.01650943396226415)
((LET (S . 537)) 0.014150943396226416)
((THAT (S . 116)) 0.014150943396226416)
((*) 0.0023584905660377358))

(6 ((((REDUCE 13) (<SENT1> . 173)) 0.9974489795918368)
((*) 0.002551020408163265)))

(7 ((((REDUCE 14) (<SENT1> . 173)) 0.8)
((*) 0.2)))

(8 ((((REDUCE 15) (<SENT1> . 173)) 0.6666666666666666)
((*) 0.3333333333333333)))

(9 ((((REDUCE 16) (<SENT1> . 173)) 0.9333333333333334)
((*) 0.06666666666666667)))

(10 ((((REDUCE 17) (<SENT1> . 173)) 0.9444444444444444)
((*) 0.05555555555555555)))

(11 ((((REDUCE 18) (<SENT1> . 173)) 0.9)
((*) 0.1)))

(12 ((((REDUCE 19) (<SENT1> . 173)) 0.875)
((*) 0.125)))

(13 ((((REDUCE 126) (<S> . 6)) 0.9923857868020305)
(((REDUCE 126) (<S> . 1503)) 0.005076142131979695)
((*) 0.0025380710659898476)))

Figure 4.2 A Portion of a Smoothed State Transition Probability Table
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of the rule being reduced. The second pair consists of the rule’s left-hand side non-terminal and
the goto state. Unobserved transitions are represented by an asterisk. Since the probability of all
unobserved transitions from a given state is the same, it need only be represented once for each
state.

4.5. The Disambiguation Procedure
We now turn our attention to the question of how to use the probabilistic finite-state model for
which we trained the statistics in order to score the alternative parse analyses that are produced by
the parser at runtime. Once computed, these scores can be used for disambiguation, by unpacking
the analysis that received the best probabilistic score from the parse forest.

4.5.1. Scoring Alternative Parse Ambiguities

As explained in the previous section, each parse tree of a given input sentence has a one-to-one
correspondence with a sequence of transitions of the finite-state machine defined by the parser’s LR
parsing table. Since our finite-state probabilistic model defines a probability for every transition
sequence, this probability can be associated directly with the corresponding parse tree. This
scheme can then be used for disambiguation by selecting among competing analyses according to
the probabilities attached to each of the corresponding parse trees.

Due to the fact that the probabilities we use do not form a probabilistic language model, the
scores of all alternative analyses of a given input do not sum to one. This could be overcome by
a process of score normalization. However, because we wish to use the probabilistic parse scores
as a measure of comparison between analyses of different parsable subsets of the input, we do not
normalize the scores. As noted earlier in this chapter, it is not inherently necessary to use a true
language model for statistical disambiguation.

When Should Probabilistic Information Be Used?

Another decision that needs to be considered is whether probabilistic information is to be applied
in advance of the parsing process, during parsing itself, or only as a post process, after the parser
has completed constructing the parse forest. Applying probabilistic information at parse time has
the potential for increasing the parser’s efficiency by allowing the parser to prune out sub-parses
that receive low probabilities. In advance of the parsing process, probabilistic information may
also be used to prune out from the parsing table transitions that received very low probabilities.
This has the potential of making the parsing table more deterministic and thus more efficient.

However, both of these possibilities turn out to be infeasible in the setting of the unification
based GLR parsing system. To a major extent this is due to the non local effects of feature structure
unification. At any point in the parse derivation process, a sub-analysis with a high probabilistic
score may be discarded due to a unification failure. This has the effect of assigning the sub-analysis
a probability of zero at the point of feature structure unification failure. As a result, a competing
sub-analysis that previously was probabilistically sub-optimal may become optimal at this point.
Due to these non local effects of unification, no Viterbi style optimization process can be applied
to the parser at runtime.
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Pruning out parser transitions in advance is infeasible for similar reasons. Additionally, the
obvious candidates to be pruned out in advance would be transitions that were not observed in the
training corpus. However, as noted earlier, parsing new unseen data will frequently involve some
transitions that were not observed in the course of training. This is particularly the case in the
context of the word skipping performed by the GLR* parser. If such transitions were to be pruned
out, the parser would be prohibited from parsing significant portions of the data. We thus refrain
from any advance pruning of the parsing table.

Since it is infeasible to use the probabilistic information in advance or in the course of the
processing process, statistical disambiguation for the unification-based GLR parsing system is
performed as a post-process, after the entire parse forest has been constructed by the parser.

Disambiguation as a Post-process

Computing the statistical scores of all alternative analyses is complicated due to the fact that they
are represented in a packed forest. In the absence of ambiguity packing, a procedure similar to the
one used for training could be used. Each alternative analysis could be scored in the following way.
First, the parse tree corresponding to the analysis would be fetched from the parse forest. Second,
our parse simulation procedure would convert the parse tree back to the sequence of transitions
performed by the parser. Third, the probability of the transition sequence would be calculated and
attached to the analysis. After each alternative analysis were scored in this fashion, the best scoring
analysis could be selected.

However, due to ambiguity packing, the set of alternative analyses and their corresponding parse
trees are packed in the parse forest. One possibility would therefore be to first unpack all alternative
analyses from the parse forest, and then use the method outlined above to probabilistically score
each of the alternatives, in order to select the best one. This approach is computationally infeasible.
In order to avoid unpacking the entire forest, we must thus develop a method for computing
statistical scores for the packed nodes of the parse forest directly, in a way that will allow us to
unpack only the best scoring analysis in the forest.

4.5.2. Computing a Probabilistic Packed Parse Forest

In order to be able to assign probabilistic scores directly to the nodes of the packed parse forest,
the following two problems must be addressed.

1. How are packed nodes to be scored?

2. How can a node in the parse forest be correlated with the parser transitions that were carried
out when the node was created?

The scoring procedure that we have developed addresses the first question in the following way.
For a packed node, a score is computed for each of the alternative sub-analyses that are packed into
the node. The packed node itself is then assigned the “best” of these scores, by taking a maximum.
This score will then be used to compute the scores of any parent nodes in the forest. According to
this scheme, the score that is attached to the root node of the forest should reflect the score of the
best analysis that is packed in it.
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Finding “From” and “Shift/Goto” States

Correlating a node in the parse forest with the parser transitions that were carried out when the
node was created is more complicated. In order to determine the transitions, we must find the state
(or set of states) of the parser when the node was created, as well as the action that was taken by
the parser. This is done using information available in the GSS. Symbol nodes in the GSS contain
pointers to their corresponding parse nodes. By tracing the state nodes to which a symbol node is
connected in the GSS, it is possible to determine the state (or states) of the parser and the action
performed, when the symbol node was created. These states can then be used to determine the
transition performed by the parser when the symbol node and its corresponding parse node were
created.

Figure 4.3 demonstrates how this is done. State nodes in the GSS are denoted by circles;
symbol nodes in the GSS are denoted by squares; and parse nodes of the parse forest are denoted
by ovals. For each parse node we determine a “from” state and a “Shift/Goto” state. The “from”
state indicates the state of the parser prior to taking the action that creates the parse node. The
“Shift/Goto” state indicates the state of the parser after the action that creates the parse node is
performed. “Shift/Goto” states of parse nodes are determined by following pointers from state
nodes of the GSS to symbol nodes and from there to the corresponding parse node. This can be
seen in both parts of the figure. In part (a), the state node in the GSS with state 3 leads to the symbol
node “det” which points to the parse node “det” in the parse forest. Therefore, the “Shift/Goto”
state for the parse node “det” is 3. In part (b), the GSS state node with state 2 leads to the symbol
node “NP” which points to the parse node “NP” in the parse forest. Thus, the “Shift/Goto” state
for the parse node “NP” is 2.

Determining the “from” state is dependent on whether the action associated with the parse node
was a shift or a reduce. If the parse node has no children, it corresponds to a shift action. This is
shown in part (a) on the left of the figure. For shift actions the “from” state is determined from the
corresponding symbol node in the GSS. The symbol node contains a pointer to the state node from
which the symbol was shifted. In our example, this was the state node with state 0. Therefore, the
“from” state for the parse node “det” is 0.

If the parse node has children, it corresponds to a reduce action. The precise rule being reduced
can be determined from the parse node and its children nodes3. In the case of a reduction, the
“from” state, is the “Shift/Goto” state of the right-most child of the parse node. In the example in
part (b) on the right of the figure, the right-most child is the parse node “n”, and its corresponding
“Shift/Goto” state is 9. Thus, this becomes the “from” state of the NP parse node.

The “Shift/Goto” and “from” states of all parse nodes are determined by a procedure that works
in two passes. In the first pass, the procedure runs through all state nodes in the GSS and for each
of them determines the “Shift/Goto” states of the appropriate parse nodes. In the second pass, the
procedure runs through all symbol nodes in the GSS and for each determines the “from” state of
the corresponding parse nodes.

3The category of the parse node is the left-hand side non-terminal of the rule, while the categories of the children form
the right-hand side of the rule.
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Figure 4.3 Determining “From” and “Shift/Goto” States for a Parse Node

Scoring the Parse Nodes

Once the “from” and “Shift/Goto” states of all parse nodes have been determined, the nodes can be
scored. Using the “from and “Shift/Goto” state information and the actual shift or reduce action,
the precise transition done by the parser is determined, and its probability is fetched from the
smoothed probability table. If the action was a shift, the transition probability is assigned to the
parse node as a score. If the the parse node has children, the corresponding action was a reduce. In
this case, the probability of the reduce transition is multiplied with the scores of the children nodes
to compute the score of the corresponding subtree, which is then attached to the parse node.

As already mentioned, the score of a packed node is determined by calculating the score of each
of the alternative packed sub-analyses, and then selecting the score of the maximal scoring one.

Because the score computation of an internal node in the parse forest requires the prior com-
putation of the scores of the node’s children, parse node scoring is performed in a “bottom-up”
fashion. Since parse nodes are sequentially allocated at parse time from a dynamic array, scoring
the parse nodes in the order in which they were created can be done by processing the array from
beginning to end.

Over-estimated Parse Node Scores

The scoring method that we have just outlined should, in principle, assign to each node in the parse
forest a score that reflects the probability of the most probable parse subtree rooted at the node.
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However, the score may in some cases be an over-estimate of the probability of the actual best
subtree, due to two reasons.

The first reason is that the scoring process does not take into account the effects of feature
structure unification. As a result, the score attached to a parse node could in fact correspond to a
potentially valid sub-analysis according to the phrase structure rules, that was discarded at some
point due to feature structure unification failure. When the failure of feature structure unification
causes a sub-analysis to be discarded, it in effect rules out the particular parse nodes that composed
it. Since our parse forest ambiguities are packed, discarding a sub-analysis is equivalent to ruling
out the corresponding ambiguities in the packed nodes of the forest. This may effect the score of a
packed node, if the score was determined by the ambiguity that is being ruled out. In such cases,
the scores of all ancestor nodes of the affected packed node are also affected. However, because it
would be computationally expensive to do so, we do not take these non-local effects of unification
failure into consideration when calculating the parse nodes scores.

The second reason has to do with the “from” states that are used to determine the precise parser
transition taken when the parse node was created. Due to the efficient representation of the GSS,
symbol nodes are at times connected to more than a single incoming state node. In such cases,
the parse node corresponding to the symbol node will have a set of “from” states instead of just
a single unique state. Such situations occur when the parse node is in fact shared among several
different analyses, with a different “from” state corresponding to each. However, we wish to assign
the parse node a single score, regardless of the analyses into which it is incorporated. We therefore
use a maximization technique. Instead of a single parser transition, we determine a set of possible
transitions using the set of “from” states. We then select the transition of maximal probability and
use this probability in calculating the score that is assigned to to the parse node. Consequently, this
may have the effect of assigning an overly optimistic probability to the parse node.

Because our scoring method is imprecise in the ways just described, the score assigned to a
parse node it is not guaranteed to be the actual true probability of the best sub-analysis rooted at
the node. However, the score is always a close over-estimate of this probability. It may thus be
viewed as a heuristic for determining the actual best scoring ambiguity packed in the forest. Our
experiments have shown that using this heuristic for picking the ambiguity that is to be unpacked
from the forest results in the selection of the actual most probable ambiguity in an overwhelming
percentage of the time.

4.5.3. Unpacking the Highest Scoring Parse

Once the preliminary task of scoring all the nodes in the parse forest is complete, the actual parse
disambiguation can be performed by a process of unpacking the best scoring analysis from the
forest. While the node scoring was done in a “bottom-up” fashion, unpacking is done “top-down”,
starting from the node at the root of the forest. Unpacking is done by going down the parse tree,
and selecting one of the alternative packed ambiguities at each packed parse node.

The unpacking process is guided by the scores of the parse nodes. At each packed node,
the unpacking procedure attempts to select the alternative that received the highest probability.
However, feature structure unification constraints are checked throughout the unpacking process,
in order to guarantee that the unpacked analysis corresponds to a valid feature structure. This is
done in the following way. After the unpacking of a packed node selects an ambiguity based on its
score, the feature structure of the selected sub-analysis is temporarily assigned to the parse node.
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This feature structure is then propagated up the parse tree, and all feature structure unifications at
ancestor parse nodes are redone, in order to verify that the selection of the particular ambiguity at the
current parse node is not ruled out by some higher level unification failure. If the unification checks
done all the way back to the root node succeed, the selected sub-analysis is found to be consistent.
The choice of which of the packed ambiguities was selected is then permanently recorded.

The unpacking process continues by moving on to unpack the children of the selected sub-
analysis, one by one, left to right. After all of the children parse nodes are unpacked, a final
unambiguous feature structure for the node is computed. The grammar rule corresponding to
the disambiguated parse node is determined by the category of the node and its children. The
feature structure unification associated with this grammar rule can then be re-executed, using the
disambiguated feature structures associated with the children nodes. The resulting unambiguous
feature structure for the parse node is then recorded.

If the unification consistency verification of a selected sub-analysis in a packed parse node fails,
the sub-analysis is not part of a valid complete feature structure and must therefore be discarded.
In this case, the unpacking procedure selects the next best scoring ambiguity in the packed node
and repeats the unification consistency verification process. The highest scoring ambiguity that is
found to also be unification consistent is eventually selected.

One should note that the fact that a particular choice at a packed parse node is found to be
unification consistent implies that the subtree corresponding to this choice necessarily contains a
sub-analysis that can lead to a complete parse tree. Therefore, the further unpacking of this chosen
subtree is guaranteed to succeed, and no backtracking will ever have to be performed.

When unpacking terminates, an unambiguous feature structure is associated with the parse
node at the root of the forest, and a corresponding parse tree can be constructed from the choices
recorded at the packed nodes. Finally, the true probability of the unambiguous parse tree that was
selected can be calculated, by a parse simulation procedure similar to the one used for training the
probabilities. The parse tree is converted into an action sequence which is then used to simulate the
sequence of transitions performed by the parser when the parse tree was created. The probability
of the transition sequence is then computed and attached to the disambiguated parse as its true
statistical score.

Limitations of the Unpacking Scheme

It is important to point out that our unpacking scheme has some limitations, that in certain cases
hinder on it’s ability to find and unpack the most probable analysis in the packed forest.

One problem, which we have already pointed out, is due to the fact that parse node scoring is
a heuristic, which at times assigns overly optimistic scores to some of the parse nodes. Since the
parse node scores determine which ambiguity is unpacked, there are instances where these score
inaccuracies will result in the unpacking of a suboptimal analysis.

Another problem is due to the depth-first method by which unpacking is performed. Due to
the effects of unification, the selection of a particular ambiguity at a packed node at one point in
the unpacking process can rule out ambiguities at some other packed node that will be processed
later on. This can result in the selection of a non-optimal analysis. The problem is demonstrated
in Figure 4.4. The root of the forest is the node labeled C. The parse nodes labeled A and B are
both packed nodes, where A packs ambiguities A1 and A2, while B packs ambiguities B1 and B2.
Now assume the feature structures associated with the nodes are such that the unification at node
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Figure 4.4 An Example of a Possible Sub-optimal Unpacking

C allows the combinations of A1 with B1 (but not with B2), and A2 with B2 (but not with B1).
Furthermore, assume that A1 has a higher probability than A2, B2 has a higher probability than
B1, and overall the combination of A2 with B2 results in an analysis of higher probability than
that of A1 combined with B1. Our depth-first unpacking method will first visit the packed node
A. Since A1 is more probable than A2, it will be processed first. Unification consistency checks
will then be performed up the tree all the way to node C, to verify that A1 can lead to a valid parse.
This check will succeed, since the unification at C allows A1 to be combined with B1. Since A1
is consistent, it is permanently selected by the unpacking procedure. When the procedure later on
attends to the task of unpacking node B, B2 will be processed first, but it’s consistency check will
fail, since it can no longer be unified at node C with the feature structure forced by the selection
of A1. Thus, B1 will have to be chosen as the selected ambiguity for node B. This results in the
unpacking of the overall sub-optimal analysis that corresponds to A1 and B1.

One way to overcome the two above mentioned problems is to replace our disambiguation
method with one that unpacks the parse forest in its entirety, computes the probability of each
and every alternative analysis, and selects the truely highest scoring one. This is computationally
expensive, and would defeat the purpose of performing ambiguity packing to begin with. We there-
fore chose to knowingly accept the limitations of the current unpacking scheme. Our experimental
results have indicated that both of these problems are extremely rare in practice. In fact, we have
yet to observe an instance in which the second problem actually occurs.

4.6. Evaluation
We have evaluated the statistical disambiguation module for two large practical grammars. The
two grammars are drastically different in character. The first is a syntactic grammar developed
for the ATIS domain. This grammar produces feature structures that represent the syntax of
the input sentence. The second grammar is the Spanish analysis grammar developed for the
JANUS/Enthusiast project. It is a predominantly semantic grammar (with some syntactic structural
rules) for the appointment scheduling domain. The feature structures produced by the grammar
are completely specified ILTs, representing the semantic relationships between the entities found
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in the input sentence. The details of our performance evaluation in these two settings are described
in the following subsections.

4.6.1. Statistical Disambiguation versus Minimal Attachment

In order to assess the effectiveness of our statistical disambiguation method, we need to compare its
performance with some other well established disambiguation technique. Two common principle-
based methods, Right Association and Minimal Attachment, were described earlier in the chapter.

As a criterion comparative with statistical disambiguation, we chose a method that is similar to
Minimal Attachment. The classical notion of Minimal Attachment, as described earlier, makes the
disambiguation decision “on-line”, at the point where the ambiguous construct must be attached.
Another possibility is to perform the disambiguation as a post-process, after the various complete
parse trees have been constructed. In this case, Minimal Attachment corresponds to minimality
in the total number of nodes in the parse tree. These two methods are usually (but not always)
equivalent. Since we perform disambiguation as a post-process to parsing, we use this modified
version of Minimal Attachment as a comparative disambiguation method.

It is easy to see that the total number of nodes in a parse tree is equal to the total number of
actions (shifts and reduces) that the GLR parser takes in constructing the parse tree. Each terminal
node in the tree corresponds to a shift action, while each non-terminal node corresponds to a reduce
action. Thus, selecting a parse with a minimum number of parsing actions is equivalent to selecting
a Minimal Attachment parse tree. The number of parsing actions of a particular parse tree is
calculated by our statistical disambiguation module as a by-product of the statistical score. It was
therefore easy to develop a Minimum Attachment disambiguation procedure, that selects among
ambiguous parses using the value of the action counter instead of the statistical score.

A decision had to be made about what should be done in cases where multiple ambiguities
happen to have the same total number of parse actions, and a preference cannot be established
using Minimal Attachment. For the ATIS domain, we decided to break such ties using Right
Association. This is implemented in the simple disambiguation procedure by comparing the parse
action sequences of the alternative parse trees. Right Association corresponds to prefering a shift
action over a reduce action. Thus, the preference is implemented by finding the first action in which
the parse action sequences differ (i.e. the first shift/reduce “conflict”), and selecting the sequence
in which a shift action was taken. For the Scheduling domain, Right Association did not seem to
be an appropriate preference measure. Because the Scheduling grammars are semantic (and not
syntactic), they were not designed in a way which would support correct disambiguation using
Right Association. Therefore, for the Scheduling domain, we decided to use the fragmentation
counter value as a secondary preference measure, in cases where Minimal Attachment cannot
completely resolve the ambiguity. If the ambiguity is still not completely resolved, further ties are
broken at random.

4.6.2. Evaluation on the ATIS Grammar

The ATIS grammar is a syntactic grammar for parsing sentences in the ATIS domain, where the
language is limited to spontaneous spoken inquiries about commercial flights in the US. The core
of this grammar is a general purpose syntactic grammar for English that was developed at the
CMT. This core grammar consists of 364 rules, which provide a fairly wide coverage of common
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syntactic structures of simple English sentences. Lexical analysis is provided by interfacing with
a lexicon via a morphological package.

The core grammar was augmented by a relatively small set of domain dependent rules for the
ATIS task. This set consists of 93 rules, most of which define the structure of ATIS specific entities
such as flight numbers, airline and airport names, time expressions, etc. The complete grammar
contains 457 rules, and compiles to a parse table of 688 states.

Since we did not have a collection of correct parses or feature structures for the ATIS grammar,
we could not use the automatic training procedure for collecting the disambiguation statistics. We
therefore used our semi-automatic interactive training procedure, where for each sentence, the
trainer is required to select the correct analysis (feature structure) from the set of analyses produced
by the parser. Because this task is time consuming, training was conducted on a set of only 500
sentences, from which a smoothed probability table was constructed.

We then tested the disambiguation module on an unseen test set of 119 sentences. For reference,
this test set is included in Appendix B. 67 out of the 119 test sentences (56.3%) are ambiguous.
In 50 out of these 67 ambiguous sentences (74.6%), one of the analyses produced by the parser
is the correct analysis. The statistical disambiguation module was used to select an analysis for
each of these ambiguous sentences. We then manually checked whether the analysis selected by
disambiguation was the correct analysis. The disambiguation module selected the correct analysis
in 37 out of the 50 sentences, resulting in a success rate of 74.0%. Using our combined Minimal
Attachment/Right Association (MA-RA) disambiguation method on the same set of sentences, the
parser was capable of selecting the correct parse in only 17 of the 50 sentences (34.0%). The
statistical disambiguation method selected the correct ambiguity in 22 sentences where the MA-
RA method failed. In 2 sentences, the MA-RA method was correct and the statistical method
was wrong. The statistical method therefore out-performed the minimal attachment method by 20
sentences, a net improvement of 40.0%.

Analysis and Discussion

The ATIS grammar is highly ambiguous due to the fact that it is a general syntactic grammar.
This is reflected by the fact that over 50% of the sentences in the test set were ambiguous, and
required disambiguation. By far, the most common occurring type of ambiguity in the test set
(and in the ATIS domain in general) is prepositional phrase (PP) attachment. It occurs in 46 out
of the 67 ambiguous sentences of our test set (68.7%). For example, the sentence “I need a flight
from Pittsburgh to Boston” has five different analyses, each corresponding to a different choice
for PP attachment. Thus, the performance of the parser in the ATIS domain is highly dependent
on the ability of our statistical disambiguation method to correctly resolve such PP attachment
ambiguities.

It is important to note that the size of the training set that we used in this experiment was very
small. Our parsing table contained 688 states, and a total of 14990 actions (with an average of
about 22 actions per state). Training on the set of 500 sentences observed only 660 of the actions,
in 275 of the states. Thus, our training observed a mere 4.4% of the possible actions, and no actions
at all were observed for 60% of the states.

With such a small proportion of observed data by which we trained our model, one would
expect the disambiguation to perform very poorly. However, our statistics work surprisingly well,
particularly in resolving PP attachments. This is due to the fact that a significant number of
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instances of frequently occurring ambiguities appeared even in our small training set. Because we
train on correct parses, a particular preference can quickly be established, even from just a small
set of training examples. In the case of PP attachment, a small set of training sentences similar
to the sentence “I need a flight from Pittsburgh to Boston” is sufficient in order to establish the
preference for attaching both PPs to the object noun (“flight” in this case). Consequently, out of
40 PP ambiguous test sentences for which there exists a correct parse, statistical disambiguation
selects the correct analysis in 28 of the cases, a 70% success rate.

These results demonstrate that although using a much larger training set should result in signifi-
cant improvements in the performance of statistical disambiguation, even extremely small amounts
of correct training data can establish structural preferences for resolving the most frequently oc-
curring types of ambiguity. Thus, significant benefits can be gained from using the statistical
disambiguation module even when trained on relatively small amounts of training data. The size
of the training set can be increased gradually over time, with an expected gradual increase in
disambiguation performance.

It should also be noted that the combined MA-RA disambiguation method performed very
poorly on the resolution of PP attachment ambiguities in the ATIS test set. The Minimal Attachment
criterion did not distinguish among most of the these PP ambiguities. Furthermore, in most such
cases, Right Association in fact prefered an incorrect analysis. For example, in the case of the
sentence “I need a flight from Pittsburgh to Boston”, Right Association chooses the analysis in
which the PP “to Boston” is attached to “Pittsburgh” rather than to “flight”. Further analysis showed
that Minimal Attachment was unable to resolve the ambiguity (i.e several ambiguities, including
the correct parse, had the same minimal number of parse actions) in 26 of the 50 ambiguous
sentences in the test set. Right Association succeeded in selecting the correct ambiguity in only
one of these 26 sentences. This resulted in the overall poor performance of the combined MA-RA
disambiguation method.

4.6.3. Evaluation on the JANUS Spanish Analysis Grammar

The Spanish analysis grammar is a grammar that is being developed by Donna Gates at the CMT
for the JANUS/Enthusiast project. For the purpose of this evaluation, we used the December-94
version of this grammar. The grammar contains 1107 rules and compiles into a parsing table with
2191 states. Lexical analysis is done by interfacing with a Spanish lexicon via a morphological
package.

The probabilities for statistical disambiguation were trained on a corpus of “target” (correct)
ILTs of 15 push-to-talk dialogs and 15 cross-talk dialogs, amounting to a total of 1687 sentences.
This was done using the automatic training procedure described in section 4.4.3. We then evaluated
the performance of the statistical disambiguation module on a unseen test set of 11 push-to-talk
dialogs and 5 cross-talk dialogs, amounting to a total of 769 sentences. 524 out of the 769 sentences
(68.1%) are parsable with one of the analyses returned by the parser being completely correct (thus
matching the “target” ILT specified for the sentence). 213 of these 524 sentences (40.6%) are
ambiguous. We applied the statistical disambiguation module to select an analysis for each of these
ambiguous sentences, and compared the analysis picked by the disambiguation module with the
“target” ILT for the sentence. The statistical disambiguation module successfully chose the correct
parse in 140 out of the 213 sentences, thus resulting in a success rate of 65.7%. For comparison,
we applied the Minimal Attachment disambiguation procedure to the same test set. With Minimal
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Attachment, the correct parse was chosen in only 79 out of the 213 sentences, resulting in a success
rate of 37.1%. Thus, the statistical disambiguation method outperforms the Minimal Attachment
method in this case by about 29%.

Analysis and Discussion

The JANUS/Enthusiast Spanish analysis grammar is significantly less ambiguous than the ATIS
grammar. This is mainly due to the fact that it is a semantic grammar, specifically designed
to produce semantic structures in a very limited domain - appointment scheduling. Even so, a
substantial portion of input sentences (about 40%) are ambiguous and require disambiguation.

It is interesting to note that statistical disambiguation appeared to be more successful in resolving
certain types of structural and lexical ambiguities, and less successful in others. To a large extent,
this may be a product of the amount of contextual information beyond the sentence level that is
required for correctly resolving various types of ambiguity. Some examples of frequently occuring
types of ambiguity in the Spanish scheduling domain can be seen in Table 4.2, along with a rating
of how successful statistical disambiguation was in choosing the correct ambiguity for these types
of ambiguities.

The size of the corpus that was available for training the probabilities of our statistical dis-
ambiguation module was about three times larger than the corpus used to train the probabilities
for the ATIS grammar. Still, we manage to observe and model only a small fraction of the actual
transitions allowed by the grammar. The parsing table for the Spanish grammar contained 2437
states, and a total of 43023 actions (with an average of about 18 actions per state). In the course of
training the probabilities, only 2274 actions were observed, in 987 of the states. Thus, the training
observed only 5.3% of all possible actions, and for 59% of the states, no actions were observed.

The statistical disambiguation results for the Spanish analysis grammar provide further evi-
dence to our experience from the ATIS grammar, that even extremely small amounts of correct
training data can establish structural preferences for resolving the most frequently occurring types
of ambiguity. This once again points to the fact that significant benefits can be gained from using
the statistical disambiguation module even when trained on relatively small amounts of training
data.
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Ambiguity Examples Number Correctly Disambiguated
by Statistical Disambiguation

Structural Ambiguity
statement vs podemos reunirnos a las tres 79 (27%) 65 (82%)
yes/no question “we can meet at three”

or “can we meet at three”
fixed-expression nos vemos 11 (4%) 9 (82%)
vs sentence “good-bye/see you”,

“let’s see” or “we will meet”
How about that? Qué tal 15 (5%) 10 (67%)
vs What’s up? “What’s up” or “How about that”
busy or free no tengo nada 4 (1%) 1 (25%)

“I have nothing (planned)”
or “I have nothing (free)”

temporal expressions dos a cuatro por la tarde 24 (8%) 16 (67%)
[two to four] in the afternoon
two to [four in the afternoon]

date vs hour de dos a cuatro 34 (11%) 30 (88%)
“from two to four” or
“from the second to the fourth”

miscellaneous 53 (18%) 35 (66%)

Lexical Ambiguity
una el lunes tengo una reunión 33 (11%) 31 (94%)

“on Monday I have a/one meeting”
bueno un tiempo bueno 10 (3%) 4 (40%)

“a good time” or “a time ... well ...”
miscellaneous 35 (12%) 31 (89%)

Total 298 232 (78%)
(282 sentences)

Table 4.2 Statistical Disambiguation Performance on
Several Common Types of Ambiguities in Spanish
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Chapter 5

Parse Evaluation Heuristics

5.1. Introduction

At the end of the process of parsing a sentence, the GLR* parser returns with a set of possible
parses, each corresponding to some grammatical subset of words of the input sentence. Due to the
beam search heuristic and the ambiguity packing scheme, this set of parses is limited to maximal or
close to maximal grammatical subsets. If the parser is to return a single parse result, it must select
from among the set of found parses a parse that is deemed overall “best”. Even in scenarios where
the parser can pass on a set of possible analyses for further processing, it is very useful to be able
to rank the set of parses found in terms of their plausibility. The primary criterion by which we
wish to evaluate the parse results is maximality of word coverage. However, in many cases there
are several distinct maximal parses, each consisting of a different subset of words of the original
sentence. Thus, additional criteria must be employed in order to determine parse preferences.
Furthermore, our experience has shown that in some cases, skipping an additional one or two input
words may result in a parse that is syntactically and/or semantically more coherent.

The process of ranking the set of parses found by the parser and selecting the best parse can be
viewed as an extension of the parse disambiguation process, which we described in the previous
chapter. Whereas parse disambiguation attempted to select the best analysis from among a set of
analyses of one particular parsed string of words, we are now faced with the extended problem of
selecting among parses that correspond to different strings of words, each of which is a subset of
the original input sentence. One of the metrics that can thus be used for evaluating the different
parses is the statistical model developed for parse disambiguation.

The issue of how to best combine different parse evaluation measures has not been widely
addressed in previous work. The few systems that have touched on this problem have focussed on
combining evaluation measures in the context of parse disambiguation, and did not deal with the
issue of selecting between parses of different input sequences. Linear combination appears to be
the method of choice in several such systems. The proper set of weights for the various measures
is typically determined manually by trial and error, or in a way that satisfies some intentional
effects [34] [64]. Outstanding in this respect is the Spoken Language Translator (SLT), a joint
research project of SRI, SICS and Telia Research [1], which uses a completely automatic two-stage
process to determine the optimal set of evaluation measure weights. In the first stage, an initial
set of weights is calculated using a least-square error criterion. An iterative “hill climbing” search
procedure is then used to refine these initial weights by optimizing the performance on a training
corpus.

This chapter describes an integrated framework that we have developed for the GLR* parser,
that allows different heuristic parse evaluation measures to be combined into a single evaluation
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function, by which sets of parse results can be scored, compared and ranked. The framework itself
is designed to be general, and independent of any particular grammar or domain to which it is
being applied. The framework allows different evaluation measures to be used for different tasks
and domains. Additional evaluation measures can be developed and added to the system. The
evaluation framework includes tools for optimizing the performance of the integrated evaluation
function on a given training corpus.

We have also developed a set of concrete parse evaluation measures for the domains to which
we have applied the GLR* parser. Although we believe that most of these measures should be
useful in evaluating parses in other tasks and domains, we restrict ourselves to demonstrating their
utility in our investigated settings.

The utility of a parser such as GLR* obviously depends on the semantic coherency of the parse
results that it returns. Since the parser is designed to succeed in parsing almost any input, parsing
success by itself can no longer provide a likely guarantee of such coherency. Although this task can
in some cases be better handled by a domain dependent semantic analyzer that would follow the
parser, we have developed a classification heuristic that is designed to try and identify situations in
which even the “best” parse result is inadequate. This parse quality heuristic is described later in
the chapter.

5.2. The Integrated Framework for Parse Evaluation

5.2.1. Evaluation Score Functions

The integrated parse evaluation framework is a method for combining different evaluation measures
into a single evaluation function. Each of the available evaluation measures is called a score
function. A score function can reflect any property of either a parse candidate or the skipped (or
substituted) portions of the input that correspond to a parse candidate . The only restrictions we
impose on score functions are the following:

1. The score function can be computed from the information available for each parse candidate
at the end of parsing a given input.

2. The score function returns a positive real number.

3. The result returned by the score function is regarded as a penalty, so that a lower score
corresponds to a preferable parse candidate.

5.2.2. Combining Score Functions

There are many different ways in which the set of evaluation score functions can be combined into
a single evaluation score. Two simple possible combination schemes are to use either the product
of the individual scores, or their sum.

Using the product of the scores is provably the correct combination scheme when all the
evaluation measures are probability functions over the space of possible parses, and they are all
independent. In this case, the product of the individual scores is a probability function that describes
the joint probability of all the measures. However, we do not wish to restrict ourselves to evaluation
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measures that are true probability functions, since some of our evaluation measures are difficult to
model probabilistically. Furthermore, it is quite certain that the measures we use as score functions
are not probabilistically independent.

We use linear combination as the scheme for combining the individual score functions. With
linear combination, each of the individual scores are first scaled by a factor called a weight, and
the results are then summed. It is easy to see that linear combination is a generalized version of
the simple sum scheme mentioned above, since a simple sum corresponds to the case where all the
weights are equal to one.

Linear combination provides a flexible and effective mechanism for combining the effects of
different evaluation measures. The premise of this method is that there are instances in which one
(or several) of the evaluation measures is better suited than the others in distinguishing which of
the set of possible parses is preferable. Particularly in cases where several candidates may appear
to be equally preferable according to one measure, a different measure can in effect “break the tie”
in favor of one of the options. Linear combination also makes it possible to take into account the
varying degree of significance of different evaluated properties. One or more of the properties can
be given a dominant effect on the combined score function by being heavily weighted relative to
the others.

5.2.3. Finding an Optimal Set of Weights

Selecting the weight assigned to each of the score functions allows us to intentionally enforce the
dominance of certain evaluation measures over others. Thus, in contrast with the approach of the
SLT project, we prefer to manually determine the initial set of weights assigned to the each of our
score functions. However, the weights must be adjusted for every new task or domain to which
the parser is applied. If done manually, this task must be performed by an expert, and even then
there is no guarantee that the selected set of weights will achieve optimal or even near-optimal
performance.

We have therefore developed a semi-automatic training procedure, which attempts to find the
optimal combination weights for a given training corpus. This training procedure can be viewed
as a search for a locally optimal function in the space of possible linear combinations. While not
guaranteed to find a global optimal evaluation function, the training procedure uses “hill climbing”
search to adjust the weights of the score functions in a way that monotonically increases the
performance of the combined evaluation function. Our optimization procedure is similar in goal to
the second stage procedure used by the SLT project [1], but the two procedures are quite different
in their details.

Understanding the Effects of Weight Modification

The goal of the optimization procedure is to adjust the weights of the score functions in a way that
maximizes the number of sentences in the training corpus for which the correct parse is assigned
the best score. To understand how this can be done, let us assume the evaluation function for a
parse � is a linear combination of � score functions, that has the form ")	\� � ?H]U^_a` 1 2 _cb�de_ 	f� � , wherede_ is the � -th score function, and 2 _ is its corresponding weight.

Let us now look at a case in which the correct parse did not receive the best score. To determine
the reason why the correct parse did not receive the best score we need to compare the score values of
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the correct parse with those of the parse that was ranked best. Let "g	\�Zhjilk�k:mlhfn � ? ] ^_a` 1 2 _-b*do_ 	f�8hjilk�k:mphfn �
be the score of the correct parse, and ")	f�qjmlrjn � ?s]U^_t` 1 2 _ubvdo_ 	\�Xqjmprwn � be the score of the parse that was
ranked best. We wish to compare the values dx_ 	f�Xhjipk�k:mphfn � of the correct parse with the corresponding
values de_ 	\�Xqjmprwn � of the parse that was ranked best.

An evaluation measure d@_ for which dy_ 	\�Xhjilk�kzmlhfn � F de_ 	f�8qjmlrjn � is one that was a bad predic-
tor in this case, since it tended to prefer the wrong parse. Lowering the weight of this score
function might therefore improve performance. In the opposite case, a measure d{_ for whichde_ 	f�Xhjipk�k:mphfn �)| de_ 	\�Xqjmprwn � is one that was a good predictor, since by itself it would have preferred the
correct parse. Increasing the weight of this score function is thus likely to improve performance. In
the case that dy_ 	\�Xhjilk�k:mlhfn � ? de_ 	f�8qjmlrjn � the measure does not distinguish between the two parses, and
nothing can be inferred about the weight assigned to the evaluation measure from this particular
case.

Determining Which Weights to Modify

The information about how the evaluation scores of the correct parse compare with those of the
best ranked parse must be collected on the entire set of sentences for which the correct parse was
not ranked as best. We refer to this set of sentences as the error set. One possible way to do this
is to collect the information on each of the scores d%_ separately. A counter d@_ � can keep track of
the number of cases in which it appeared to be useful to increase the weight of the score function.
A counter de_f} can keep track of the number of cases in which it appeared to be useful to decrease
the weight of the score function. Once these counters are collected we can identify the measure
for which ∆ de_ ? de_ � L do_f} has the greatest absolute value. Modifying the weight of this score
function is likely to have the most significant effect on performance. If d{_ � was greater than dy_f} ,
the weight assigned to the measure should be increased. In the opposite case where d{_f} was greater
than de_ � , the weight of the measure should be decreased.

Collecting the counter information for each of the evaluation measures separately does not allow
us, however, to take into account any interactions between the different measures. For example, it is
possible that the most common case in the error set is one where the weight of one measure should
be increased while at the same time the weight of another measure should be decreased. In order
to capture such information, we maintain counters for error vectors instead of for the individual
measures. An error vector is simply a vector of length 
 (where 
 is the number of evaluation
measures), composed of “+” “-” and “0” signs. A “+” at position � in the vector indicates that
the weight of dy_ should be increased. Similarly, a “-” at position � indicates that the weight of d{_
should be decreased, and a “0” indicates that the weight should not be changed. For example, for a
set of four measures, the vector “+0-0” represents the combination of d 1 � and d 3

} , while d 2 andd
4 are to remain the same.

Note that for sentences where the best ranked parse is the correct parse, the values d{_ 	f�8hjilk�k:mphfn �
and d _ 	f� qjmlrjn � are identical, and the sentence can therefore be assigned to the vector “000 b-b-b ”. The
error vectors can thus conveniently represent the results of analyzing the comparative information
on evaluation scores for all sentences in the training set. For each sentence, we can compare the
evaluation scores of the correct parse with those of the parse ranked best, and classify the sentence
into one of the error vectors accordingly. The vector “000 b-b-b ” should normally have the highest
count, since it represents all the “good” cases, where the correct parse was ranked first. The other
vectors are true error vectors.
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We now pick the error vector that was most common. The vector indicates which weight
modifications should prove to be most useful in improving performance. If position � in the vector
is “+”, the weight of dy_ is increased. Similarly, if position � is “-”, the weight of d9_ is decreased.
If position � is “0”, the weight for d@_ is not changed.

Weights are modified by discrete steps which are individually determined for each of the
evaluation measures. It is important that the weight modification steps not be too large, since this
may result in “jumping over” the local optima in the search space.

Modifying the weights according to the most common error vector will improve performance,
if the new set of weights succeeds in changing the parse rankings of sentences that were classified
to that vector in a way that the correct parse of some of these sentences is now ranked best. This is
likely to be the case, since we increase the weights of evaluation measures that are good predictors,
and decrease the weights of bad predictors. However, the weight modification is likely to also
effect the parse ranking of sentences that were classified to other vectors, so the overall effect is
not guaranteed to be better.

Some error vectors are unlikely to result in improved performance and are thus not considered
in this process. We consider only error vectors that contain at least one “+” and one “-”. This is
because increasing the weights of evaluation measures according to an error vector that contains
only “+” signs (and possibly some “0” signs) cannot change the ranking of parses of sentences that
were assigned to this vector. Therefore, such weight modifications can only improve performance
via some side effects on sentences classified to other vectors. A similar argument holds for error
vectors that contain only “-” and “0” signs.

The Semi-automatic Optimization Procedure

The weight modification process that we have described above was developed into a semi-automatic
iterative optimization procedure that can be viewed as performing a “hill climbing” search, starting
with the manually pre-determined set of evaluation measure weights. In the first iteration, the
procedure performs the following steps:

1. Parse all the sentences in the training corpus and rank the parse results using the evaluation
function with the current weights.

2. Analyze the scores of the parses of each of the sentences, and classify the sentences to their
corresponding error vectors.

3. Find the most common useful error vector, and determine discrete weight adjustments that
correspond to the vector.

4. Update the weights of the evaluation function

In order to compare the evaluation scores of the correct parse of a sentence with those of the
parse ranked as best, the correct parse must first be identified. This is done by comparing the ILTs
of each of the resulting parses with a pre-defined correct “target” ILT. Once the correct parse is
identified, the evaluation scores of the correct parse can be compared with the values of the parse
ranked best, and the sentence can be classified into one of the error vectors.

In iterations subsequent to the first, the training set is reparsed using the new set of score
function weights, the parses of the sentences are analyzed, and the sentences are again classified to
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their proper error vectors. The results of this new classification must then be compared with those
of the previous iteration, in order to determine if overall performance has improved. If performance
did not improve, we go back to the old set of weights and may try modifying them according to the
next most common error vector. If there are no more error vectors to try out, the process is halted,
and the current set of weights are found to be locally optimal.

Our optimization procedure is only semi-automatic, due to the fact that it consults with the user
before actually modifying the weights of the score functions, and proceeding to the next iteration.
The user can decide whether to update the weights according to the most common error vector,
some other error vector, or whether to halt at this point.

5.3. The Parse Evaluation Score Functions
The analysis of spontaneous speech has been the major task to which we have applied the GLR*
parser. Within this task we have experimented with two different domains, the Scheduling domain
and the ATIS domain. For these two domains we have developed a set of evaluations heuristics
that is composed of the following four measures:

1. A penalty function for skipped words

2. A penalty function for substituted words

3. A penalty function for fragmentation of the parse analysis

4. A penalty function based on the statistical score attached to the parse

Although these measures were specifically developed for evaluating parses within the task of
spontaneous speech analysis, we believe that with some adjustments, they should also prove to be
useful in other tasks and domains. Furthermore, our parse evaluation framework allows us to easily
augment these evaluation measures with new measures appropriate for the task and domain.

The details of these four evaluation heuristics are described in the following subsections.

5.3.1. The Penalty Function for Skipped Words
The most important of our parse evaluation heuristic measures is the penalty function for skipped
words. Since we are primarily interested in parses of maximal (or close to maximal) coverage of
the original input string, this penalty function is designed to prefer parses that correspond to fewer
skipped words. In its most simple form, the function assigns a penalty of 1 � 0 for each word of the
original string that had to be skipped. We will refer to this simple skipping penalty heuristic as
simple-skip.

In order to try and cope with the phenomena of false starts and repeated words, which frequently
occur in spontaneous speech, we modified the simple-skip heuristic to also account for the location
in the sentence in which the skipped word occured. The intent is to assign a slightly smaller penalty
for skipping words earlier in the input sentence. This will create a preference to chose a parse that
skips a false start or the first of a pair of repeated words, since the penalty for such a skip will be
slightly smaller. For example, consider the sentence “I can um I can’t meet you on Monday”. The
two maximal parses found for this input correspond to the subsets “I can meet you on Monday”
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and “I can’t meet you on Monday”. In both cases, two input words had to be skipped. However,
we would like to prefer the second parse, since it corresponds to skipping the false start “I can”.

The skip penalty dependency on location in the input is implemented in the following way.
Instead of assigning a uniform penalty on 1 � 0 to each skipped word, we assign a penalty in the
range of � 0 � 95 � 1 � 05 � . Skipping the first word of the input string will incur a penalty of 0 � 95, while
skipping the last word incurs a penalty of 1 � 05. The penalty for skipping a word anywhere between
these two ends is determined by linear interpolation. We refer to this skipping penalty heuristic as
interpolated-simple-skip.

Saliency Dependent Penalties for Skipped Words

The simple-skip and interpolated-simple skip heuristics operate under the basic assumption that
all words are equally important and thus skipping over any word should incur the same penalty.
This is obviously not the case, since in any domain, some words are more important to the correct
interpretation of the sentence than others. Furthermore, skipping over certain function words,
such as those indicating negation, can result in an analysis that is very different from the intended
meaning, and should thus be penalized more heavily when skipped.

We therefore decided to develop a scheme in which the penalty for skipping a word would
be some function of the saliency of the word in the domain. This scheme was implemented for
the English scheduling domain (ESST) in the JANUS project. To determine the saliency of our
vocabulary words, we compared their frequency of occurrence in transcribed domain text with the
corresponding frequency in “general” text, estimated from a sample of text from the “Switchboard”
corpus, a corpus of 2281 phone conversations between a pair of speakers. In precise terms, let~ Wc�>�����4�-�x	�� � be the frequency of word � in the ESST transcriptions, and let

~ Wc�>�c�-�$	�� � be the
frequency of � in the general text corpus. Then +4CE�*	�� � , the saliency of word � , was defined as the
ratio between these two frequencies, i.e.

+4CE�*	�� � ?
~ Wc�>�������-�e	�� �~ Wc�>� �-� 	�� �

The saliency measure is then converted into a saliency dependent skip penalty by a linear
transformation to the range � 0 � 0 � 1 � 0 � . The word � 1, for which +4CE�*	�� 1

� is lowest, is assigned a
penalty value of 0 � 0, and the word � 2, for which +4CE�*	�� 2

� is the highest, is assigned a penalty of
1 � 0. The penalty for words with a saliency that falls in between the two extremes is determined by
linear interpolation.

As a final step, some manual post-processing was performed on the table of saliency dependent
penalties, to address some anomalies, mostly due to the the effects of data sparseness. The skip
penalties for certain classes of words, such as days-of-the-week, were made uniform by assigning
each word in the class a penalty equal to the average penalty of words in the class. Also, the penalty
assigned to negation words was increased, to reflect their relative importance in our application 1.

1words such as “not” are not significantly more frequent in our domain then in general text. Thus, the penalty value
assigned to such words according to our saliency measure is rather small.We thus artificially inflate the penalty value
for a small group of such words.
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5.3.2. The Penalty Function for Substituted Words

In the context of a speech processing system, where the parser’s input is the output of a speech
recognizer, overcoming errors introduced by the recognizer is a major concern. Word substitutions
are the most common type of such errors. We attempt to correct speech substitution errors by using
the linguistic constraints imposed by the grammar in several different ways. These are described
in detail in chapters 6 and 7. One of the methods involves using a confusion table. Words that are
commonly misrecognized as other words are listed in the table along with one or more words that
are likely to be their corresponding correct word. When working with a confusion table, whenever
the GLR* parser encounters a possible substitution that appears in the table, it attempts to continue
with both the original input word and the specified “correct” word(s).

Using a word substitution should incur some penalty, since we would like to choose an analysis
that contains a substitution only in cases where the substitution resulted in a significantly better
parse, due to the linguistic constraints of the grammar. Various methods can be used to assign the
penalty for word substitutions.

We have so far experimented with using the confusion table method only for parsing speech rec-
ognized input in the ATIS domain. We currently use a simple penalty scheme for word substitutions,
where each substitution is assigned a penalty of 1 � 0.

5.3.3. The Fragmentation Penalty Function

The nature of the spoken language in general, and spontaneous speech in particular, is such that
utterances are frequently composed of grammatically incomplete sentences or pieces of sentences
that we call fragments. Furthermore, due to limited grammatical coverage, the GLR* parser may
not be able to parse a complete utterance even in cases where it is well structured. Nonetheless, most
of the clauses in such utterances are likely to be parsable. The grammars we developed for parsing
spontaneous speech using the GLR* parser were explicitly designed to tackle these problems. In
order to successfully parse fragmented input, the grammars have very inclusive notions as to what
may constitute a “grammatical” sentence. The grammars allow meaningful clauses and fragments
to propagate up to the top (sentence) level of the grammar, so that fragments may be considered
complete sentences. Additional grammar rules allow an utterance to be analyzed as a collection of
several grammatical fragments.

In terms of their grammatical restrictness, our grammars for parsing spontaneous speech are
thus rather “loose”. The major negative consequence of this looseness is a significant increase in
the degree of ambiguity of the grammar. In particular, utterances that can be analyzed as a single
grammatical sentence, can often also be analyzed in various ways as collections of clauses and
fragments. Our experiments have indicated that, in most such cases, a less fragmented analysis is
more desirable. Thus, a mechanism for prefering less fragmented analyses was required.

One way in which this problem is indirectly addressed is via the statistical disambiguation
module. The statistics collected for the grammar should implicitly reflect the preference for less
fragmented analyses. However, because the statistical model accounts for only limited context, it
is only partially effective in this respect. We therefore designed a separate explicit mechanism for
expressing the fragmentation of an analysis, and for prefering analyses that are less fragmented.

The fragmentation of an analysis is reflected via a special “counter” slot in the constructed
feature structure. The value of the counter slot is determined by explicit settings in the various
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rules of grammar. This is done by unification equations in the grammar rule, that set the value of
the counter slot in the feature structure that corresponds to the left-hand side non-terminal of the
grammar rule. In this way, the counter slot can either be set to some desired value, or assigned a
value that is a function of counter slot values of constituents on the right-hand side of the rule.

By assigning counter slot values to the feature structure produced by rules of the grammar, the
grammar writer can explicitly express the expected measure of fragmentation that is associated
with a particular grammar rule. For example, rules that combine fragments in less structured ways
can be associated with higher counter values. As a result, analyses that are constructed using such
rules will have higher counter values than those constructed with more structurally “grammatical”
rules, reflecting the fact that they are more fragmented.

The preference for a less fragmented analysis is realized by using the value of the counter slot
of the complete analyses as a parse evaluation measure. The value of the counter slot is viewed as a
fragmentation penalty, since higher counter values reflect more fragmented analyses. The counter
slot mechanism in effect allows the grammar writer to explicitly declare preferences between
different grammar rules and sets of grammar rules. Although used to primarily reflect preferences
with respect to fragmentation, the same mechanism can be used to express other preferences as
well.

5.3.4. The Statistically Based Penalty Function

The statistical disambiguation module described in the previous chapter is based on a finite-state
probabilistic model. As described earlier, the model’s probability space consists of all possible
state transition sequences of the parser, as defined by the LR parsing table. The probability of a
parse analysis is determined from the state transition sequence to which the parse corresponds.

Most statistical disambiguation modules are designed to evaluate the probabilities of the set of
analyses of a given input string. The probabilities of the various possible analyses of a particular
input string are normalized, so that they sum to one. With such models, probabilities of parses
of different input strings cannot be directly compared. Because we use a finite-state probabilistic
model, the action probabilities do not depend on the given input sentence. The relative probabilities
of the input words at various states are implicitly represented by the action probabilities. Because
the finite-state probabilistic model assigns an actual probability to every transition sequence, tran-
sition sequences that correspond to parses of different inputs are directly comparable. This enables
us to use the statistical score as a parse evaluation measure.

By using statistical parse scores as an evaluation measure across input strings, we hope to
capture structural grammatical preferences, in the exact same way such preferences are used for
parse disambiguation. For example, it may be the case that some subset of a particular input string
is parsable, but only using a set of one or more uncommon grammar rules. On the other hand, a
different subset of the same input string, corresponding to a different choice of skipped words, is
also parsable, but with a set of more commonly used grammar rules. This difference should be
reflected in the statistical scores of the parses of the two string subsets. Since each of the subsets
may itself be ambiguous, we would like to compare the “best” statistical score of each of the
alternative parsable substrings.

Because the process of unpacking the most probable ambiguity of a parse is computationally
expensive, we wish to avoid having to actually do the unpacking for each of the parse candidates
that correspond to different sets of skipped words. Instead, we use the estimated probability scores
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that are computed for all the parse nodes by the bottom-up phase of the disambiguation process,
as described in the previous chapter. Although these estimated scores are often somewhat over-
optimistic, they are usually close enough to the correct probability of the best ambiguity to have
the desired effect of prefering parses with a more common grammatical structure.

To enable parse probabilities to be used as an evaluation measure, they must first be converted
into a penalty score, such that more “common” parse trees will receive a lower penalty score. The
conversion to a penalty score should be such that the range of produced scores is comparable with
the other evaluation scores, so that they can be combined with reasonable weight settings. We do
this conversion using the following formula:

���>
ZCE�j,���?H	 0 � 1 ��	�L��lY�� 10 	\�X+42�Y�Wc� �����
This conversion results in statistical penalty values that are most commonly in the range of 0.0

to 5.0, which puts them in the same order of magnitude as our other penalty scores.

5.4. The Parse Quality Heuristic

Since the GLR* parser is designed to find and parse grammatical subsets of a given input
string, the parser fails altogether only on inputs where none of the subsets considered by the parser
constitutes a grammatically complete sentence according to the grammar. Thus, it is expected that
in most applications, a parsable subset will be found for almost any given input string. However,
parsing success by itself does not provide any indication of how close in meaning the parse result
is to the correct interpretation of the entire input utterance.

To address this problem, we have developed a classification heuristic that is designed to try and
identify situations in which even the “best” parse result is inadequate. Our parse quality heuristic
is designed to classify the parse chosen as best by the parser into one of two categories: “Good” or
“Bad”.

The classification is done by a judgement on the combined penalty score of the parse that was
chosen as best. The parse is classified as “Good” if the value of the penalty score does not accede
a threshold value. The threshold is a function of the length of the input utterance, since longer
input utterances can be expected to accommodate more word skipping, while still producing a good
analysis.

We currently use the classification procedure in Figure 5.1 for the scheduling domain in the
JANUS speech translation project. The same classification procedure is used for both the English
and Spanish analysis grammars. The calculated threshold is a sum of a threshold for the statistical
penalty score and a threshold for the other three penalty scores. The threshold parameters were
determined empirically. The statistical penalty threshold was calculated based on a linear regression
estimate of the average statistical penalty as a function of the input length. A statistical penalty that
is greater than the threshold is a good indication that the grammatical structure of the corresponding
parse is uncommon, or was not observed in the training data. The threshold for the other three
penalties was set so that their penalty sum would not accede 25% of the input length. Empirically
this was determined to be a reasonable threshold. The two thresholds are combined together, to
allow a good statistical score to compensate for bad other scores, and vice versa.
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stat-threshold = 0.3 + (0.45 * length-of-input)
other-threshold = 0.25 * length-of-input

If (AND (penalty-score > 3.0)
(penalty-score > stat-threshold + other-threshold))

then quality = ‘‘Bad’’
else quality = ‘‘Good’’

Figure 5.1 The Parse Quality Heuristic for the JANUS Scheduling Domain

5.5. Performance Evaluation
We evaluated the performance of the parse selection heuristics and the parse quality heuristic in
two different settings. The first setting is an unseen test set of 513 transcribed Spanish dialogs in
the scheduling domain, using the Spanish analysis grammar developed for the JANUS/Enthusiast
project. The second setting is a unseen test set of 120 sentences in the ATIS domain, using the
ATIS syntactic grammar.

The parse selection heuristics are evaluated by comparing the performance of the integrated
set of parse scoring functions with a simple parse selection function that uses maximality of word
coverage as the sole criterion for parse selection. In cases where there are several different maximal
parses, the simple parse selection function chooses one at random.

The parse quality heuristic is evaluated by isolating the set of sentences that required skipping
over portions of the input, judging by hand the quality of the parse selected as best, and comparing
this manual judgement with the “Good/Bad” classification produced by the heuristic.

5.5.1. Evaluation on the JANUS Spanish Analysis Grammar

Training the Score Function Weights

The weights of the score functions were first trained on a training corpus of 635 English sentences
in the scheduling domain, parsed with the English analysis grammar. These weights were then fine-
tuned on a training corpus of 2390 Spanish sentences, parsed with the Spanish analysis grammar.
The training was done using the semi-automatic weight adjusting procedure described earlier in
the chapter. For the English analysis grammar we used the following three parse score functions:

1. The penalty function for skipped words, using saliency dependent penalties.

2. The fragmentation penalty function.

3. The statistical score penalty function.

As described earlier, the saliency dependent penalty for a skipped word is determined from
the relative frequency of the word in in-domain versus out-of-domain texts, initially normalized
to the range � 0 � 0 � 1 � 0 � . Instead of adjusting the weight for the skipped words penalty function,
we experimented with adjusting the range into which these penalties are normalized, which has a
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similar but not identical effect. The initial weight of the statistical penalty score was 1.0, and the
initial weight of the fragmentation penalty score was 0.5.

We then parsed the 635 English training sentences using these initial weights. This yielded a set
of 21 sentences for which a correct parse exists but was not selected by the parser. These sentences
were classified into their corresponding error vectors. 17 out of the 21 sentences were classified
into the error vectors +-+ and +--, indicating that the weight of the penalty function for skipping
words needed to be increased while the weight of the penalty function for fragmentation should
be decreased. After a number of iterations of adjusting these two parameters, the fragmentation
penalty weight was set to 0.25, and the skip penalty range was set to � 0 � 5 � 5 � 0 � . With these settings,
14 of the 17 initial bad cases were fixed. Further attempts to tune the weights did not succeed in
resolving the remaining 6 bad cases.

We re-parsed the entire training set again, to check the performance of the adjusted new weights.
Only one additional new bad case was detected, while as expected, for 14 of the 21 previous bad
cases, the parser now selected the correct parse. The final set of parameters chosen for the English
analysis grammar are therefore:

1. The saliency dependent penalty for skipped words is normalized to a penalty in the range
� 0 � 5 � 5 � 0 � , with a weight of 1.0 .

2. The fragmentation penalty is factored by a weight of 0.25 .

3. The statistical score penalty is unfactored (i.e. a weight of 1.0).

The score function weights established for the English grammar were used as a starting point
for the Spanish analysis grammar. For Spanish, we use the same set of parse scoring functions that
were used for the English analysis grammar. However, we do not have saliency dependent penalties
for skipped words in Spanish. The basic penalty for a skipped word is thus 1.0 . We suspected
that the weights established for the English grammar would not be optimal for Spanish, and that
some additional fine tuning would be required. In particular, it seemed likely that the weight of
the penalty function for skipped words would have to be modified, since this penalty function for
Spanish does not use saliency dependent scores.

We parsed a training corpus of 2390 Spanish sentences, with the Spanish analysis grammar
using the score function weights from the English grammar. This produced a set of 21 sentences
for which a correct parse exists but was not selected by the parser. It should be noted that the
penalty score weights derived from the English grammar achieve surprisingly good results for the
Spanish grammar, since they fail to pick the correct parse less than 1% of the time on the training
set. Nevertheless, we continued to investigate if the weights could be further tuned.

The set of bad sentences was classified into error vectors. The most common error vector was
-0+, with 7 cases. The vector -++ occurred 3 times and the vector --+ twice. Thus, 12 of the
21 cases indicate that the weight of the penalty function for skipped words should be decreased,
while the weight of the statistical score penalty function should be increased. We experimented
with several weight adjustments, but none of them managed to correct more than 4 out of the 21
error cases. This is not surprising, considering the already excellent performance of the previous
weight settings. However, reparsing the entire training set revealed that any increase in the weight
of the statistical score increases the overall number of bad cases on the entire training set. On the
other hand decreasing the weight of the statistical score to 0.7 corrected 2 of the bad cases, and
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Parsable Parsable with Correct Parse Unmatched Parse Acceptable Best Method
Matched ILT Selected Marked “Good” Translation Possible
and Skipping with Skipping Selected

Simple 500 33 24 (72.7%) 91 62 (68.1%) 74 (81.3%)
Full 500 33 26 (78.8%) 91 68 (74.7%) 74 (81.3%)

Table 5.1 Parse Selection Heuristics Performance Results

did not introduce any new errors. The final set of parameters for the Spanish analysis grammar is
therefore:

1. The penalty for skipped words is in the range � 0 � 95 � 1 � 05 � , with a weight of 1.0 .

2. The fragmentation penalty is factored by a weight of 0.25 .

3. The statistical score penalty is factored by a weight of 0.7 .

Evaluation Methodology

The performance of the parse selection heuristics was evaluated by two complementary methods.
The first method compares the feature structure of the selected parse with a correct “target” ILT
that is hand-constructed for the sentence being parsed. This method is similar to the one used in the
process of training the score function weights, and can detect the sentences for which a completely
correct parse exists but is not selected by the parser.

However, in the majority of sentences where parsing requires skipping over some portions of
the input, none of the possible parses is completely correct, and thus comparing the resulting parses
with a the correct ILT will not produce a complete match. For such sentences, a different method
is required for evaluating if the selected parse is reasonably close to the intended meaning of the
sentence. We accomplish this by generating an English translation from the selected parse ILT, and
manually evaluating the quality of this translation. Cases where the translation is judged as bad are
checked, in order to determine whether this is due to a generation error or to a bad parse ILT.

Performance Results - Parse Selection Heuristics

We evaluated the parse selection heuristics and the parse quality heuristic on an unseen test set
of 513 Spanish sentences. The performance results are shown in Table 5.1. Our first evaluation
method looked at complete matches with respect to a set of correct target ILTs. 500 out of the 513
sentences are parsable, and for 300 out of the 500 parsable sentences, one of the parses produced by
the parser completely matches its corresponding target ILT. In 33 cases, the correct parse requires
some word skipping. Using the simple parse evaluation heuristic, the correct parse was selected
in 24 of the 33 cases (72.7%), while with the full integrated set of parse evaluation heuristics, 26
of the 33 cases (78.8%) were correct. The simple heuristic thus picks a wrong parse in 7 cases,
while the full set of heuristics is wrong in only 5 cases. In 2 cases, the selected parse is correct (in
terms of skipped words), but a wrong ambiguity was selected. Thus, the full set of parse evaluation
heuristics performs only slightly better according to this evaluation method.
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Parsable With a With an With a Parsable With a With an With a
Marked Correct Acceptable Bad Marked Correct Acceptable Bad
“Bad” ILT Translation Translation “Good” ILT Translation Translation

57 0 (0.0%) 10 (17.5%) 47 (82.5%) 443 274 (61.9%) 389 (87.8%) 54 (12.2%)

Table 5.2 Parse Quality Heuristic Performance Results - Spanish Grammar

Our second evaluation method looked at the sentences for which no completely correct ILT is
produced by the parser. We manually evaluated the quality of the translation of the these ILTs into
English. 200 out of the 500 parsable test sentences do not produce a completely correct ILT. 148
out of the 200 are sentences that require some amount of skipping in order to be parsed. With the
simple parse selection heuristic, the parser selects a parse that results in an acceptable translation
in 72 out of the 148 sentences. With the full set of heuristics, an acceptable translation is produced
in 78 out of the 148 cases.

It should be noted that in some of the 148 cases, all possible parses of the sentence are bad,
and result in bad translations. Since it was infeasible to manually evaluate the translations of all
possible parses of the sentences, it is difficult to estimate the number of additional sentences with
parses that result in acceptable translations, beyond the 78 found by the full heuristics. However,
since the parse quality heuristic is designed to filter out bad parses (see its separate evaluation
below), we were able to look at the complete set of parses of sentences with skipping that were
marked “Good”, but for which the chosen parse is bad. The parse quality heuristic marks as “Good”
91 out of the 148 sentences. With the simple parse selection heuristic, acceptable translations are
produced for 62 out of these 91 sentences, while with the full parse selection heuristics, 68 out of
the 91 sentences result in acceptable translations. Thus, there are 23 sentences for which the parse
chosen by the full heuristics is bad. After analyzing the translations produced by all possible parses
of these 23 sentences, we found that in only 6 of these sentences there exists a parse that would
produce an acceptable translation. Thus, a “best possible” parse selection method would be able
to achieve acceptable translations for 74 of the 91 sentences (81.3%). Compared with this optimal
method, our full heuristics selected a good parse in 68 cases (74.7%), while the simple heuristic
selected a good parse in only 62 cases (68.1%).

Performance Results - Parse Quality Heuristic

The performance results of the parse quality heuristic are shown in Table 5.2. 57 out of the
500 parsable sentences are marked as “Bad” by the parse quality heuristic. We again evaluated the
selected parse for these sentences, by comparing the parse with its corresponding target ILT, and
by manually evaluating the English translation produced from the parse. None of the 57 sentences
marked “Bad” have a completely correct parse that matches the corresponding target ILT. The
selected parse for only 10 of the 57 sentences produces an acceptable translation, and for 47 out of
the 57 sentences marked “Bad” (82.4%), the selected parse produces a bad translation. Of the 443
sentences marked “Good” by the parse quality heuristic, the selected parse for 274 of the sentences
(61.9%) matches its target ILT, and for 115 of the sentences (26.0%), the selected parse is not a
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If (AND (penalty-score > 3.0)
(penalty-score > 0.5 * length-of-input)

then quality = ‘‘Bad’’
else quality = ‘‘Good’’

Figure 5.2 The Parse Quality Classification Procedure for the ATIS Grammar

complete match, but produces an acceptable English translation. Thus, the translation accuracy
success rate for parses marked as “Good” by the parse quality heuristic is 87.9%.

These results demonstrate that the rather simple parse quality heuristic is fairly effective in
detecting sentences that are parsable with the GLR* parser, but which do not produce an adequate
parse result.

5.5.2. Evaluation on the ATIS Grammar

Setting the Parameters of the Heuristics

The grammar for the ATIS domain is a syntactic grammar that was developed from a general
purpose syntactic grammar for English, using a development set of 300 sentences. The details of
the grammar were described in the previous chapter in section 4.6.1. The parse evaluation functions
used in conjunction with the ATIS grammar are the following:

1. The penalty for skipped words, where each skipped word receives a penalty in the range
� 0 � 95 � 1 � 05 � , depending on its position in the sentence.

2. The fragmentation penalty function.

3. The statistical score penalty function.

4. The substitution penalty function, where each substituted word receives a penalty of 1.0.

After some experimentation, the evaluation feature weights were set in the following way. The
penalty score for skipped words was left unfactored, with a weight of 1.0. The penalty score for
substituted words was assigned a weight of 0.9, so that substituting a word would be preferable to
skipping the word. The fragmentation penalty function was given a weight of 1.1, to prefer skipping
a word if it reduces the fragmentation count by at least one. The statistical score is unfactored, with
a weight of 1.0.

Since we do not have a collection of “target” correct parses for the ATIS grammar, it is not
possible to fine-tune these score function weights using the semi-automatic training procedure.

The parse quality classification procedure developed for the ATIS grammar appears in Figure 5.2.
The parameters of this heuristic were set empirically based on experiments on the training set of
300 sentences.
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Parsable Parsable Acceptable Parse Best Possible
with Skipping Selected Method

Simple 119 53 16 (30.2%) 22 (41.5%)
Full 119 53 20 (37.7%) 22 (41.5%)

Table 5.3 Parse Selection Heuristics Performance Results - ATIS Grammar

Parsable With an With a Parsable With an With a
Marked Acceptable Bad Marked Acceptable Bad
“Bad” Parse Parse “Good” Parse Parse

23 2 (8.7%) 21 (91.3%) 96 71 (74.0%) 25 (26.0%)

Table 5.4 Parse Quality Heuristic Performance Results - ATIS Grammar

Performance Results

We used a set of 120 new sentences as a test set. We compared the performance of the full heuristics
described above with that of a simple heuristic that picks the parse with the least number of skipped
and substituted words, breaking ties randomly. The parse selected best by the parser was evaluated
by hand and categorized as either acceptable or bad. The results are shown in Table 5.3. 119 of the
120 sentences were parsable. The simple parse selection heuristic selects an acceptable parse for 69
out of the 119 parsable sentences (58.0%). The full parse selection heuristics select an acceptable
parse in 4 additional cases, for a total of 73 out of 119 (61.3%). In both evaluations, the selected
parse in 11 sentences is bad due to an incorrect ambiguity being picked. 53 of the 119 sentences
required some degree of skipping in order to be parsed. With the simple heuristic, an acceptable
parse was returned in 16 out of the 53 sentences that involved some degree of skipping. With our
full heuristic scheme, an acceptable parse was returned in 20 sentences (4 additional sentences).
Further analysis showed that only 2 sentences had parses that were better than those selected by
our full parse evaluation heuristics.

We also evaluated the effectiveness of our parse quality heuristic in identifying bad parses.
These results are shown in Table 5.4. 23 out of the 119 parsed sentences are marked as “Bad”.
The selected parse of only 2 of these 23 sentences (8.7%) is acceptable, while for 21 of the 23
sentences, the selected parse is indeed bad. 96 of the 119 parsed sentences are marked as “Good”.
The selected parse of 71 out of these 96 sentences (74.0%) is an acceptable parse. The selected
parse for 25 of the 96 sentences (26.0%) is bad. For 11 of these sentences, the parse is bad solely
due to a wrong ambiguity being picked. In only 14 cases (14.6%) did the parse quality heuristic
fail to mark a truely bad parse as “Bad”. Thus, the simple parse quality heuristic that we use for
the ATIS grammar is quite effective in identifying parsable sentences that produce bad parses.
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Chapter 6

Parsing Spontaneous Speech Using
GLR*

6.1. Introduction

The analysis of spoken language is widely considered to be a more challenging task than the
analysis of written text. All of the difficulties of written language (such as ambiguity) can generally
be found in spoken language as well. However beyond these difficulties, there are additional
problems that are specific to the nature of spoken language in general, and spontaneous speech in
particular. The major additional issues that come to play in parsing spontaneous speech are speech
disfluencies, the looser notion of grammaticality that is characteristic of spoken language, and the
lack of clearly marked sentence boundaries. The contamination of the input with errors of the
speech recognizer further exacerbates these problems.

A grammar based parser such as GLR*, that is designed to successfully process spontaneous
speech, must address these issues via the constructed grammars, as well as the parsing architec-
ture itself. While the particular grammars developed for spontaneous speech can concentrate on
describing the structure of the meaningful clauses and sentences that are embedded in the spoken
utterance, the parsing architecture must facilitate the extraction of these meaningful clauses from
the utterance, while disregarding the surrounding disfluencies. The design of GLR*, as described
in detail in the last three chapters, provides a parsing architecture that is well suited to handle the
task of parsing spontaneous speech.

This chapter describes how the GLR* parser has been integrated into JANUS, a practical speech-
to-speech translation project at Carnegie Mellon University. The system is designed to facilitate
communication between a pair of different language speaking speakers, attempting to schedule
a meeting. Thus, the current domain of the system is restricted to appointment scheduling. We
describe how the GLR* parser was integrated as the parsing component of the system. We address
the issue of how the parser is designed to handle the problem of parsing full speech utterances that
lack explicit sentence boundaries. We then report on the performance of GLR* as an individual
component within the system, and on the resulting overall end-to-end performance of the system.
We draw conclusions about the robustness, accuracy and utility of GLR* for parsing spontaneous
speech by a comparing the performance results of GLR* with similar evaluations using the non-
robust original GLR parser and Phoenix, a robust parser designed for analyzing semantic concepts,
which is available as an alternative parsing component in the JANUS system. We analyze the
performance on both transcribed input and actual top-best hypotheses from the speech recognizer.

In the last section of the chapter, we evaluate the performance of GLR* on speech recognized
input in the ATIS domain using a syntactic grammar. In the ATIS setting of the GLR* system,
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Figure 6.1 JANUS System Diagram

common occurring word substitutions of the speech recognizer are handled by using a simple word
confusion matrix.

6.2. The JANUS Speech Translation System

JANUS [101] [92] [91] [106] [107] is a speech-to-speech translation system currently dealing with
dialogs in the scheduling domain (two people scheduling a meeting with each other). The current
source languages are English, German, and Spanish, and the target languages are English and
German. Additional languages, such as Korean and Japanese are currently being added to the
system. System development and testing is based on a collection of approximately 400 scheduling
dialogs in each of the source languages.

The main modules of the JANUS system are speech recognition, parsing, discourse processing,
and generation. Each module is designed to be language-independent in the sense that it consists
of a general processor that applies independently specified knowledge about different languages.
Therefore, each module actually consists of a processor and a set of language-specific knowledge
sources. A diagram of the system is shown in Figure 6.1.

Processing starts with speech input in the source language. Recognition of the speech signal is
done with acoustic modeling methods, constrained by a language model. The output of the speech
recognizer is an n-best list of text strings representing the utterance hypotheses. In the current
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configuration of the system, only the single top best hypothesis of the speech recognizer is passed
on to the parser. We are also exploring a configuration of the system, in which the output of the
speech recognizer is a word lattice, which is pre-processed and then passed on to a lattice parsing
version of the GLR* parser. This version of the system is described in Chapter 7.

The top best speech hypothesis is then passed on to one of the two parsing components of the
system. In principle, the processing tracks of both parsers can proceed in parallel, and be merged
back together after the generation stage. However, we currently operate the system in configurations
that incorporate only one of these two tracks. In the configuration in which the GLR* parser is used,
the utterance is first pre-processed by a procedure that breaks long utterances into sub-utterances,
that may each contain one or several sentences or clauses. The analysis grammars developed for
the GLR* parser allow it to identify additional clause boundaries within each sub-utterance. The
process by which this is done is described later in this chapter. The output of the GLR* parser is
a set of interlingua texts, or ILTs, representing the semantic content and structure of the clauses
of the utterance that were parsed by the parser. The GLR* parser can output either a single best
disambiguated parse result, or a ranked list of possible analyses.

The discourse processor [81], based on Lambert’s work [51] [52], disambiguates the speech act
of each sentence, normalizes temporal expressions, and incorporates the sentence into a discourse
plan tree. The discourse processor’s focusing heuristics and plan operators eliminate some ambi-
guity by filtering out hypotheses that do not fit into the current discourse context. The discourse
component also updates a calendar in the dynamic discourse memory to keep track of what the
speakers have said about their schedules.

The updated set of ILTs is the sent to the GenKit generation module. GenKit [98] is a uni-
fication based generation system designed to complement the GLR parsing system. Similar to
analysis grammars, generation grammars contain context-free rules augmented with LFG style
feature unification operations. However, in the generation case, the feature operations constrain the
generation of the string in the target language from a completely specified feature structure input.
GenKit uses a top-down depth-first generation strategy. With well developed generation grammars,
GenKit results in very accurate translation results for well specified ILTs.

In the alternative parsing path, the utterance is analyzed by the Phoenix parser. Phoenix is a
parser specifically designed to extract semantic information which is then represented in frame-slot
structures. The parser analyzes as much of the input utterance as possible by matching it with the
patterns of the concept frames. The concept frame patterns are specified by recursive transition
networks (RTNs). The parser can ignore words between slot-level concepts, but cannot ignore
words interior to a concept pattern. It does not require any segmentation of the utterance into
sentences or clauses. A more detailed description of the Phoenix parser is presented in the next
section.

Since the frame-slot meaning representation produced by the Phoenix parser is different from
the ILTs produced by the GLR* parser, target language output must be produced using a Phoenix
generation module that is complementary to the parser. The Phoenix generator uses a simple left-
to-right processing order to produce target language expressions from the analyzed concept tokens.
The generation grammar consists of a set of target-language phrasings of each token, including
lookup tables for such variables as numbers and days of the week. The result is a meaningful, but
occasionally terse, translation.

In the final stage, the text in the target language, produced in either of the two possible language
processing paths, is passed on to the speech synthesizer to produce a spoken utterance in the target
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language. The JANUS project currently uses commercially available speech synthesizers for this
task.

6.3. The Phoenix Parser

The Phoenix system [103] [63]) was designed for development of simple, robust natural language
interfaces to applications. The Phoenix parser was originally developed for extracting semantic
meaning representations from spoken utterances in the ATIS domain, where requests for flight
information must be translated into appropriate database queries. The Phoenix system was ranked
first in performance in a number of competitive DARPA ATIS evaluations.

The Phoenix parser uses frames to represent semantic relations. A frame represents some basic
type of action for the application. Slots in a frame represent the information that is relevant to the
action and are filled by matching patterns in an input string. The slots are filled independent of the
order in which they appear in the frame. The patterns which fill slots are represented as Recursive
Transition Networks (RTNs). Each slot has a grammar which specifies the patterns (strings of
words) that can fill the slot. These grammars are called slot-nets. Since the slot-nets are compiled
into RTNs, they can include calls to other networks.

In the course of parsing, the system uses slot-nets to match substrings in the input string. When
a slot-net matches a substring, it is passed along for incorporation into frames. The system uses a
beam search for frames. When a slot matches, it will extend all active frames that contain that slot.
It will also activate any currently inactive frames that contain the slot.

The parser matches as much of the input utterance as possible to the patterns specified by the
RTNs. Out-of-lexicon words are ignored. Words in the system lexicon, but not fitting the pattern
being matched, will cause the slot pattern not to match. This does not cause the entire parse to
fail, simply the slot being matched. The parser can ignore words between slot-level concepts, but
cannot ignore words interior to a slot pattern. A version of the parser is under development which
allows substitution, deletion and insertions in a pattern with a penalty.

The parser may combine slots together in any order, but in cases in which slot boundaries are
not clear-cut it must decide how to segment the utterance. First, it looks for the interpretation with
the most words matched. If there is no single best interpretation in this sense, it searches for the
interpretation with the fewest number of slots. This is equivalent to finding the least fragmented
analysis. If the interpretation is still ambiguous, it picks the one which has a fewer number of
tokens at a higher level in the parse tree. Thus, an interpretation in which two tokens are nested is
preferable to one in which they are sequential. The system has no real notion of sentence structure.
The input is parsed as a simple sequence of frames. At the end of parsing the utterance, the single
best parse found by the beam is returned.

The set of semantic tokens for the appointment scheduling task was developed from a set of 45
example English dialogues. The top-level frame tokens represent speech acts, such as suggestion
or agreement. Lower-level slot tokens capture the specifics of the utterance, such as days of the
week.

A typical temporal token can have as a sub-token a date, which can in turn consist of
month and day sub-tokens. The temporal slot can fit into a frame representing a statement of
unavailability, in which case a second slot suggesting an alternate time might follow.
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Original utterance:
THAT SATURDAY I’M NOT SURE ABOUT BUT YOU SAID YOU MAY BE BACK
IF YOU THINK YOU’LL BE BACK THE THIS SUNDAY THE TWENTY EIGHTH
I COULD SEE YOU AFTER ELEVEN AM ON THAT IF YOU’RE BACK

As decoded by the recognizer:
*that saturday i’m not sure about but *you -said *you *maybe
-back *into *think *to *be *back the sunday the twenty eighth
i could see you after eleven am on *that *if *you -back

Parsed:
[temporal] ( [point] ( [d_o_w] ( SATURDAY )))
[give_info] ( [my_reluctance]

( I’M NOT SURE ABOUT ))
[interject] ( [conj] ( BUT ))
[give_info] ( [my_availability]

( [temporal] ( [point] ( THE
[date] ( [d_o_w] ( SUNDAY ) THE

[day_num] TWENTY EIGHTH )))
I COULD SEE YOU ))

[temporal] ( [range]
( [after] ( AFTER ) [time]

( [hour] ( ELEVEN AM )) ON ))

Figure 6.2 Phoenix Analysis of a Typical Utterance

Figure 6.2 shows an example of a speaker utterance and the parse that was produced using the
Phoenix system. The recognizer output, which is the text sent to the parser, is shown with unknown
(-) and unexpected (*) words marked.

6.4. Parsing Full Utterances with GLR*
In order to be integrated into a complete speech-to-speech translation system, the parsing component
must be capable of handling the type of data that is produced by the actual speech recognizer. The
input to the speech system is in the form of a continuously uninterrupted spoken utterance from a
user. In the context of a dialog between two users, such a utterance is called a turn. This utterance
may consist of multiple clauses or sentences. The output of the speech recognizer is a textual
hypothesis of the complete utterance, and contains no explicit representation of the boundaries
between the clauses.

Our experience in analyzing spontaneous speech in the scheduling domain has shown that
clauses form the fundamental “unit” of content. Although it is common to find some dependencies
between clauses (mainly due to anaphora and ellipsis), the intended meaning can usually be well
captured on the clausal level. Thus, the analysis grammars developed for the scheduling domain
were constructed to primarily analyze clauses. Multi-clause utterances must therefore be broken
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into clauses, in order to be properly parsed. The task of segmenting an utterance into clauses can
be designated to a pre-processor to the parser, or it can be handled explicitly by the grammar in the
course of parsing.

The approach we have taken in the JANUS system is a hybrid one, that combines both of these
methods. The first and most straightforward step was to extend the analysis grammar with a high-
level rule that allows the input utterance to be analyzed as a concatenation of clauses. However, the
introduction of this simple rule results in some serious computational difficulties. This is due to the
fact that for typical multi-clause utterances, there are many different possible ways of segmenting
the utterance into clauses that are analyzable by the grammar. For long multi-clause utterances,
the computational complexity of pursuing all such possibilities results in infeasible parse times and
memory requirements. We significantly reduce the severity of this problem by using a pre-processor
to break the utterance into smaller sub-utterances, that may still contain a number of clauses. In
addition, we developed a powerful set of heuristics for further constraining the segmentations that
are considered by the parser.

We call the segmentation of the utterance done by the pre-processor a “hard” break, since it
forces the parser to consider each of the broken parts as separate units. This segmentation cannot
be undone in the course of parsing. The segmentation performed by the parser, on the other hand,
is called a “soft” break, since the parser has the liberty to decide on how to segment each parsed
sub-utterance in a way that produces the best analysis.

The Utterance Segmentation Procedure

Although the output from the speech recognizer does not contain explicit clause boundaries, it does
contain information that is highly indicative of such boundaries. Periods of silence and non-human
noises that were detected by the recognizer appear as silence and pause “words” in the speech
hypothesis. The recognizer distinguishes between various types of such non-content “words”.
These distinctions are not important to the parser, which considers them all as noise words.

The noise words in the speech hypothesis can be used in order to pre-break the speech recognized
utterance. Because pre-breaking the utterance is a “hard” choice that cannot be corrected by the
parser, we wish to avoid breaking the utterance at a point which in fact is not a clause boundary.
On the other hand, it is acceptable to miss some of the actual clause boundaries, since the parser
can later further segment the sub-utterances into clauses. The current criterion used by the pre-
breaking procedure is the appearance of two or more consecutive noise words in the utterance.
Our experience has shown that two consecutive noise words indicate a clause boundary in an
overwhelming percent of the time. The appearance of single isolated noise words does not provide
sufficient confidence for a clause boundary, since such noise words frequently occur within clauses
as well.

We are currently working on enhancing this simple criterion for breaking the utterance. This
work is being conducted in the context of developing an accurate procedure for breaking speech
lattices (see Chapter 7), but will apply to the case of individual speech hypotheses as well. A minor
modification is being made to the speech recognizer, so that information about the duration of
silence and pause words will be explicitly represented in the speech hypothesis. Since long pauses
are highly correlated with clause boundaries, the pause duration information can then be used to
determine a threshold for breaking the utterance. Another possible source of information being
investigated is the use of prosodic cues from the speech signal itself.
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Constraining the Parser

The sub-utterances that are passed on to the parser may still contain several clauses. Using the
top-level grammar rule that allows an utterance to consist of several clauses, the parser must
determine the various ways in which the input can be segmented into clauses. However, to reduce
the complexity of this task, we augmented the parser with several heuristics that constrain the set of
clausal boundaries considered by the parser. The parser heuristics we have developed assume that
the most desirable parse is one in which the utterance is segmented into as few clauses as possible.
Since the grammar was developed to cover predominately individual clauses, this assumption
generally holds well in practice (i.e. the grammar generally does not erroneously analyze multiple
clauses as a single one). Our approach to the problem consists of two components. The first is a
heuristic for pruning out all parses that are not minimal in the number of clauses. The second is a
statistical method for blocking the parser from considering potential sentence boundaries at points
in the utterance that are deemed to be statistically unlikely.

The pruning heuristic is implemented as a lisp procedure that is invoked along with the grammar
rule that combines a new clause to a list of prior analyzed clauses. The feature structure associated
with the list of prior analyzed clauses is pruned in a way that preserves only values that correspond
to the minimum number of clauses. The f-structure of the new clause is then combined only with
these selected values.

Since the clause combining grammar rule is invoked at each point where a part of the utterance
may be analyzed as a separate clause, the pruning procedure incrementally restricts the parses being
considered throughout the parsing of the input utterance. This results in a substantial decrease in
the amount of memory required by the parser in the course of parsing the utterance.

The Statistical Clause Boundary Predictor

The second component of our solution is a procedure that restricts the points in the utterance
that may be considered as clause boundaries by the parser, according to a confidence measure
that is trained statistically. Specifically, the frequency of appearance of a clause boundary to the
left, in between, and to the right of each pair of words (bigram) in the utterance is estimated
from a training corpus. The procedure restricts the parser to consider clause boundaries only
at points, where the combined probability of the surrounding bigrams exceeds a pre-determined
threshold. This procedure was primarily developed and implemented by Noah Coccaro, a research
programmer for the JANUS project.

The statistics are used to restrict the number of points in which the parser allows a clause
boundary to occur. To achieve this, an additional rule that invokes the code was added to the
grammar. Each clause that is parsed with the grammar must successfully “fire” this rule. The rule
will only fire successfully if the point where the clause ends is a statistically reasonable point to
segment the utterance. Should the rule fail, the parser will be prevented from pursuing a parse in
which the following words in the utterance are interpreted as a new clause.

The grammar rule sends to the stochastic code the four words surrounding the point where the
current clause would end (the two words prior to the point in question and the two words following
it). Assume these are ��� 1 � 2

� � 3 � 4 � , where the potential clause boundary is between � 2 and � 3.
There are three statistics relevant to the decision of whether or not to allow a clause boundary at
this point. These are:
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1. d 	���� 1 � 2
� � � : the frequency of a clause boundary being to the right of the bigram ��� 1 � 2 � .

2. d 	���� 2
� � 3 � � : the frequency of a clause boundary being in the middle of the bigram ��� 2 � 3 � .

3. d 	�� � � 3 � 4 � � : the frequency of a clause boundary being to the left of the bigram ��� 3 � 4 � .
These three frequencies are calculated from the number of times a clause boundary appeared in

the training data in conjunction with the appropriate bigrams. In other words, if ��	���� _ ��� � � � is the
number of times that a clause boundary appears to the right of the bigram ��� _ ����� and ��	���� _ ����� � is
the total number of times that the bigram ��� _ ����� appears in the training set, then

d 	���� _ ��� � � � ? ��	���� _ ��� � � �
��	���� _ ����� �

d 	���� _ � ����� � and d 	�� � � _ ����� � are calculated in a similar fashion. However, for a given quadruple
��� 1 � 2

� � 3 � 4 � , in order to determine whether the point in question is a reasonable place for breaking
the utterance, we compute the following estimated frequency ˜d 	���� 1 � 2

� � 3 � 4 � � :
˜d 	���� 1 � 2

� � 3 � 4 � � ? ��	���� 1 � 2
� � �Z� ��	���� 2

� � 3 � �e� ��	�� � � 3 � 4 � �
��	���� 1 � 2 � �e� ��	���� 2 � 3 � ��� ��	���� 3 � 4 � �

This was shown to be more effective than the average or linear combination of the frequenciesd 	���� 1 � 2
� � � , d 	���� 2

� � 3 � � and d 	�� � � 3 � 4 � � . The method we use is more effective because a bigram
with a low frequency of appearance, for which we may not have sufficiently reliable information,
is not counted as highly as the other factors.

In order for the grammar rule to be allowed to fire, the value of the computed fraction ˜d must
be greater than a threshold set in advance. The value of the threshold is set manually so as to try
and obtain the best performance on the training set. Each time the statistical check is evoked at
parse time, there are four possible results:

1. The point in question is in fact a clause boundary, and the rule succeeds – a hit.

2. The point in question is in fact a clause boundary, and the rule fails – a miss.

3. The point in question is not a clause boundary, and the rule fails – a correct rejection.

4. The point in question is not a clause boundary, and the rule passes – a false alarm.

A correct rejection results in a saving of work by the parser, and an increase in efficiency. A
false alarm does not damage the parse results, but is simply a lost opportunity to increase efficiency.
A hit is an instance of the desired behavior, allowing the parser to break the utterance where it
should be broken. A miss, on the other hand, inhibits the parser’s ability to correctly parse the
clauses in question, and will usually result in a bad analysis. We therefore tune the threshold such
that there are as many correct rejections as possible, yet very few misses.

Test results of using the statistical clause boundary predictor on a test set of English scheduling
data showed an overall decrease of about 30% in the time necessary to parse the test set. As an
unexpected benefit, adding the statistical module improved parses of 15 utterances, while degrading
only 7. This is contrary to intuition that performance is likely to be worse as a result of misses.
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The performance improved because strange clause boundaries which the parser would previously
have allowed are rejected, in favor of more reasonable locations.

To further improve the statistics, we used some word clustering. The clustering combines the
statistics of words that have similar usage, thus increasing the amount of data we have on a bigram.
Lists of clusters used in the speech language modelling were obtained and edited by hand. Words
that were clustered but didn’t seem to have similar usages were removed. Days, months, hours,
and time of day are examples of clusters that were used.

6.5. JANUS Performance Evaluation

6.5.1. Evaluation Criteria and Methods

This section describes and analyzes the results of our performance evaluation of GLR* within the
JANUS system. The evaluations reported in this section are designed to answer several different
questions by which the performance of GLR* should be judged. The major questions being posed
are the following:

1. Robustness - how robust is the GLR* parser to the types of disfluencies, noise and ill-formed
input that occur in practice in spontaneous spoken scheduling dialogs that are processed by
JANUS?

2. Accuracy - how accurate, and of what quality are the analyses that are produced using the
GLR* parser, and what is the overall effect of the parser accuracy on the quality of the
translations produced by the system?

3. Utility - How does GLR* compare with Phoenix, the alternative parsing architecture available
in JANUS, and what are the strengths and weaknesses of each of the architectures?

We address the question of robustness by comparing the performance of GLR* with that of the
original non-robust GLR parser from which it was developed. This test is easy to implement, since
the word skipping capabilities of GLR* are controllable and can be completely disabled, resulting
in a parser version that is equivalent to using the original GLR parser. We apply GLR and GLR*
to a common unseen test set, using the same grammar.

The first measure we examine is how many of the test utterances were parsable by each of
the two parsers. We then compare how many of the parsable utterances produced an acceptable
translation. We also examine the ability of GLR* to mark bad parses using the parse quality
heuristic, since in essence, this is equivalent to rejecting the utterance as unparsable. We thus
look at how many of the utterances, that were marked “good” by the parser, had an acceptable
translation. We also compare the precise correctness of the parse results of GLR and GLR*. This
addresses the issues of both robustness and accuracy. For the Spanish test set, where a set of target
ILTs was available, this is done using the ILT matcher. We analyze how many of the parser ILTs
completely matched their corresponding target ILT. For the English test set, no target ILTs were
available, and we thus analyze the precise translation quality of the parsed utterances.

To further address the question of accuracy, we examine how well the parse quality heuristic of
GLR* was capable in identifying parses as “good” or “bad”. We compare this with the parsability
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test of of the original GLR parser, where any parsable utterance is considered “good”, and any bad
input fails to parse.

The question of utility is addressed by comparing the performance of GLR* and Phoenix on
common test sets. Because the output produced by each of the parsers is different, we cannot
compare these outputs directly, or by measuring them against a set of correct target ILTs. We
therefore evaluate the parsers by comparing the quality of the English translations produced from
their output. This measures the effect of parser performance on the end-to-end performance of the
system. The procedures used for end-to-end evaluations are described in the next sub-section.

We attempt to substantiate our performance results with several evaluations using both Spanish
and English as the source languages, and with transcribed text as well as top-best output from the
speech recognizer as the form of input to the parser.

End-to-end Evaluation Methodology

Similar to the evaluations presented in the previous chapters, we use two different evaluation
methods. The first method compares the ILT chosen by the parser with a pre-determined correct
“target” ILT using an automatic matching program. This method can determine whether the ILT
produced by the parser is completely correct. However, in many of the sentences where parsing
requires skipping over some portions of the input, the parse result is reasonably close to the intended
meaning of the sentence, yet not completely correct. We therefore use a complimentary end-to-end
evaluation method, in which we manually evaluate the quality of the translation produced from the
parser ILT. Although human involvement renders this method to be somewhat less objective, it is
far better in evaluating parser performance in the context of the task at hand - spoken language
translation.

End-to-end evaluation is conducted on an utterance level, assigning a grade to the translation
of each input utterance. Each translation output is classified into one of three categories: “Perfect”
“OK” or “Bad”. When analyzing speech recognized data, we allow a fourth category, “Recognition
Error”. Bad translations that can be completely attributed to errors of the speech recognition are
classified into this category. The criteria by which the grades are assigned are shown in Figure 6.3.
Both “Perfect” and “OK” translations are considered acceptable, and are summed together when
results are tabulated.

One of the drawbacks of relying on human judges to score translations is their subjectiveness.
We have found that scores from different judges may vary by as much as 10 percentage points.
The most reliable results are derived from employing a panel of at least three judges to score the
translations. Their scores can then be averaged together. It is also preferable to use judges that are
not directly involved in the development of the system knowledge sources. However, it is often
difficult to meet these conditions. All of the end-to-end evaluation results reported in this section
were graded by at least two judges. The Spanish evaluations were graded by Donna Gates and
Marsal Gavalda, who develop the JANUS/Enthusiast Spanish analysis grammars for GLR* and
Phoenix respectively. The English evaluations were graded by Kaori Shima and Laura Mayfield,
who developed the JANUS English analysis grammars.
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Perfect Fluent translation with all information conveyed
OK All important information translated correctly but some

unimportant details missing or translation is awkward
Bad Unacceptable translation

Figure 6.3 Evaluation Grade Categories

Evaluation on Grammatical vs. Ungrammatical Input

GLR* was designed to deal with two different types of phenomena: noise and disfluencies in
the input, and limited grammar coverage. Both types frequently occur in spontaneous spoken
language. Although the GLR* parser does not make a distinction between these two phenomena,
it is useful and insightful to separately evaluate the capabilities of the parser in handling each of
these problems. In order to do so, some additional evaluations were conducted on the JANUS
English input test set. The test set was manually divided into two subsets - one consisting of input
utterances that were judged to be completely grammatical, and the other consisting of utterances
that contained noise, disfluencies or ungrammatical segments. In addition to evaluating parser
performance on the entire set, we conducted similar evaluations on the two subsets. The results of
these evaluations are presented later in this chapter.

Utterances taken from the “grammatical” subset and which cannot be fully parsed reflect
grammar coverage limitations. Therefore, the performance evaluation on the “grammatical” sub-
set allows us to assess how well GLR* copes with the problem of limited grammar coverage.
Utterances in the “ungrammatical” subset contain noise and disfluencies, and will usually not fully
parse. However, even if the utterance can be considered grammatical when stripped of its disflu-
encies, it may still not be fully parsable due to limited coverage of the grammar. Thus, to some
extent, the evaluation on the “ungrammatical” subset still reflects the ability of the GLR* parser to
deal with both types of phenomena.

6.5.2. Evaluation on Spanish Input

GLR* Compared with GLR

Table 6.1 and Table 6.2 compare the performance of GLR and GLR* on Spanish transcribed input.
Speech recognized output for this test set was not available. The test set consisted of 11 push-to-talk
and 5 cross-talk unseen transcribed Spanish dialogs that were pre-broken into sentences. The entire
test set consists of 798 sentences (513 push-to-talk sentences from 89 utterances and 285 cross-talk
sentences from 118 utterances).

The robustness results are presented in Table 6.1. While GLR is capable of parsing only 68.0%
of the sentences, GLR* succeeds in parsing 97.9% of the sentences, an increase of almost 30%.
Although this gain in parsable sentences is impressive, not all the additional parsable sentences
result in correct parses or accurate translations. The fourth row in the table compares the number of
parses for which an acceptable translation was generated from the ILT returned by the parser. For
GLR, 515 sentences (64.5% of the total number of sentences) result in an acceptable translation.
For GLR*, 628 sentences (78.7%) have an acceptable translation. The number of sentences with
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GLR GLR* Difference
number percent number percent number percent

Total Test Set 798 100.0% 798 100.0% - -
Parsable 543 68.0% 781 97.9% 238 29.8%
Unparsable 255 32.0% 17 2.1% 238 29.8%
Parsable with
Accept. Trans. 515 64.5% 628 78.7% 113 14.2%
Parsable
Marked Good
w/Accept. Trans. 515 64.5% 618 77.4% 103 12.9%
Matched
Parses 442 55.4% 461 57.8% 19 2.4%
Unmatched
Parses 101 12.7% 320 40.1% 219 27.4%

Table 6.1 Robustness Results: GLR vs. GLR* on Spanish Transcribed Input

GLR GLR*
number percent number percent

Total Parsable
Marked Good 543 100.0% 715 100.0%
Parsable Good
w/Acceptable Translation 515 94.8% 618 86.4%
Parsable
Marked Bad 0 - 66 100.0%
Parsable Bad
w/Bad Translation 0 - 56 84.8%

Table 6.2 Accuracy Results: GLR vs. GLR* on Spanish Transcribed Input

an acceptable translation increased by 113 sentences (14.2%). Thus, about half of the additional
sentences parsed by GLR* result in an acceptable translation, while the other half generate bad
translations.

The parse quality heuristic of the GLR* parser attempts to detect such bad parses. For practical
purposes, parses that are marked “Bad” by the parser should be considered similar to a parsing
failure. It is thus meaningful to also look at the set of sentences that were marked “Good” by
the parse quality heuristic of the parser. For GLR, all parsable sentences are considered marked
“Good”, since no word skipping is involved. The fifth row in Table 6.1 shows the number of
sentences marked “Good” by the parser that have an acceptable translation. This result is 618
sentences for GLR* (77.4% of the total number of sentences), versus the 515 (64.5%) for GLR.
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Thus, on parses marked “Good”, GLR* still gets an additional 103 sentences with acceptable
translations, which amounts to a 12.9% increase out of the total test set.

The last two rows of Table 6.1 examine the number of sentences for which the selected parse
completely matched the specified target ILT for the sentence. For GLR, 442 sentences (55.4%
of the total) completely match the target ILT. For GLR*, 461 sentences (57.8%) have a perfectly
matching target ILT. The increase in perfect matches is therefore only 19 sentences, which amounts
to 2.4% of the total test set. The number of parsable sentences that do not match their target ILT
increases from 101 for GLR (12.7%) to 320 (40.1%). These results indicate that sentences that
require word skipping in order to be parsed, most often result in a parse that is not completely
correct, and thus does not completely match the target ILT. However, in roughly 50% of the time
the missing information is not crucial to the translation of the sentence meaning, and the translation
results are therefore acceptable.

The results in Table 6.2 analyze the accuracy of parse quality heuristic of GLR* on the test set,
and compare them with GLR. The accuracy is measured by comparing the parser’s judgement with
respect to the quality of the parse, with the quality of the actual translation produced from the parse.
For the GLR parser, parsability is the sole measure of accuracy, and any sentence that is parsable
is considered to be good. GLR* uses the parse quality heuristic to determine whether the parse is
acceptable. The first row in Table 6.2 is the total number of sentences for which the selected parse
was considered good by each of the parsers. For GLR, the total is the 543 parsable sentences. For
GLR*, the total is the 715 parsable sentences that were marked “Good”. The second row in the
table shows how many of the sentences considered good resulted in an acceptable translation. For
GLR, 515 of the 543 parsable sentences (94.8%) have an acceptable translation. For GLR*, 618 of
the 715 “Good” sentences (86.4%) have an acceptable translation. We also looked at the sentences
that GLR* marked as “Bad”. The parse of 66 sentences was marked “Bad” by GLR*. For 56 out
of the 66 sentences (84.5%), the translation produced from the parse is in fact bad. GLR does not
have a similar category of parses marked “Bad”, since bad sentences are unparsable. However,
of the 255 sentences that are unparsable by GLR (and thus judged as bad), 103 (40% of the 255)
are parsed by GLR*, marked “Good” and have an acceptable translation. The results in Table 6.2
indicate that the GLR* parser’s parse quality heuristic is about 85% accurate in classifying parses
as either “Good” or “Bad”, while GLR achieves an accuracy of about 95% on the sentences that it
can parse.

GLR* Compared with Phoenix

Table 6.3 shows the results of a end-to-end performance evaluation that compared a version of
JANUS that uses the GLR* parser with a version that uses the Phoenix parser. In this evaluation, the
test set consisted of 2 cross-talk dialogs with a total of 54 utterances. Results on both transcribed
input and speech recognized input are presented. For GLR*, both the transcribed and speech
recognized utterances were pre-broken using the procedures described in section 6.4.

The end-to-end translation performance of both parsers on this test set was quite similar. On
transcribed input, the percentage of utterances with acceptable translations using GLR* was slightly
better than the corresponding figure when using the Phoenix parser (78.7% for GLR* versus 75.0%
for Phoenix). Phoenix had a slight advantage on translations that were judged as “Perfect” (52.8%
for Phoenix versus 51.9% for GLR*), but this was offset by a slightly larger advantage that GLR*
had on translations judged as “OK” (26.9% for GLR* versus 22.2% for Phoenix).
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GLR* Phoenix
Transcribed Speech Transcribed Speech

Input Recognized Input Recognized
Perfect
Translation 51.9% 27.2% 52.8% 31.5%
OK
Translation 26.9% 18.3% 22.2% 17.6%
Acceptable
Translation 78.7% 45.5% 75.0% 49.1%
NIL Output 0.0% 0.0% 4.6% 1.9%
Bad
Translation 21.3% 10.5% 20.3% 17.6%
Poor
Recognition - 44.0% - 31.4%

Table 6.3 Performance Results of GLR* vs. Phoenix on Spanish
Input (2 cross-talk dialogs, 54 utterances, 05-08-95)

Evaluation Date
17-03-95 31-03-95 24-04-95 01-05-95 08-05-95
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On speech input, where the system analyzes the top-best hypothesis produced by the speech
recognizer, Phoenix performed slightly better than GLR*. The percentage of utterances with
acceptable translations was 49.1% for Phoenix versus 45.5% for GLR*. Once again, Phoenix had
slightly more “Perfect” translations (31.5% for Phoenix versus 27.2% for GLR*), and GLR* had
slightly more “OK” translations (18.3% for GLR* versus 17.6% for Phoenix). For speech, bad
translations that can be directly attributed to incorrect recognition are accounted for separately in
the last row of the table. Poor recognition accounted for more of the bad translations when GLR*
was used (44.0%) than when Phoenix was used (31.4%).

We have been conducting frequent end-to-end evaluations on unseen test sets in recent months,
in order to assess the progress in grammar development. Figure 6.4 shows a comparative plot of
the performance of GLR* and Phoenix over a sequence of several of these evaluations. The graph
in the figure indicates the percent of utterances for which an acceptable translation was produced
in each of the evaluations.

6.5.3. Evaluation on English Input

GLR* Compared with GLR

The robustness evaluation results, comparing GLR and GLR* on both transcribed and speech
recognized English input are presented in Table 6.4 and Table 6.5. The test set consisted of
99 push-to-talk unseen dialogs. The transcribed text was pre-broken into clauses according to
transcribed noise and pause markings. This produced a set of 360 sub-utterances or clauses, each
of which was parsed separately by the parsers. The top-best speech recognized hypotheses were
pre-broken using the two consecutive noise words criterion, as described in section 6.4. This
produced a set of 192 sub-utterances or clauses, which were then parsed by the parsers.

On transcribed input (Table 6.4), GLR succeeds to parse 55.8% of the clauses, while GLR*
succeeds in parsing 95.0% of the clauses. This amounts to a gain of about 39% in the number
of parsable clauses. On the speech recognized input (Table 6.5), GLR parses only 21.4% of the
input sub-utterances, while GLR* succeeds to parse 93.2%. In this case, the increase in parsable
sub-utterances amounts to almost 72%.

The second part of the tables compares the number of parses for which an acceptable transla-
tion was generated. On transcribed input, GLR* produced acceptable translations for 85.6% of the
clauses, compared with 54.2% for GLR. Thus, GLR* produces over 30% more acceptable trans-
lations. This is also the case when only the parses marked “Good” by the parse quality heuristic
of GLR* are considered. The results on speech recognized input are rather similar. While GLR
produced an acceptable translation only 17.2% of the time, GLR* did so in 47.9% of the time.
Once again, this amounted to an increase of about 30.0% in the number of acceptable translations.
Similar results were achieved when only the parses marked “Good” by GLR* are considered.

The third part of the tables examines the translation accuracy of GLR and GLR* on the test
set. For transcribed input, perfect translations were achieved for 165 clauses (45.8%) for GLR,
versus 212 clauses (58.9%) for GLR* (an increase of 13.1%). OK translations were produced for
30 clauses (8.3%) for GLR, versus 96 clauses (26.7%) for GLR* (an increase of 18.3%). GLR
produced bad translations for only 6 clauses (1.7%), while GLR* did so for 34 clauses (9.4%), a
difference of 7.7%. For the speech recognized input, the percent of perfect translations increased
from 15.6% for GLR to 26.6% for GLR* (10.9% increase), and the percent of OK translations
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GLR GLR* Difference
number percent number percent number percent

Total Clauses 360 100.0% 360 100.0% - -
Parsable 201 55.8% 342 95.0% 141 39.2%
Unparsable 159 44.2% 18 5.0% 141 39.2%
Parsable with
Accept. Trans. 195 54.2% 308 85.6% 113 31.4%
Parsable
Marked Good
w/Accept. Trans. 195 54.2% 306 85.0% 111 30.8%
Perfect Trans. 165 45.8% 212 58.9% 47 13.1%
OK Translations 30 8.3% 96 26.7% 66 18.3%
Bad Translations 6 1.7% 34 9.4% 28 7.7%

Table 6.4 Robustness Results: GLR vs. GLR* on English Transcribed Input

GLR GLR* Difference
number percent number percent number percent

Total Clauses 192 100.0% 192 100.0% - -
Parsable 41 21.4% 179 93.2% 138 71.9%
Unparsable 151 78.6% 13 6.8% 138 71.9%
Parsable with
Accept. Trans. 33 17.2% 92 47.9% 59 30.7%
Parsable
Marked Good
w/Accept. Trans. 33 17.2% 89 46.4% 56 29.2%
Perfect Trans. 30 15.6% 51 26.6% 21 10.9%
OK Translations 3 1.6% 41 21.4% 38 19.8%
Bad Translations 8 4.2% 87 45.3% 79 41.1%

Table 6.5 Robustness Results: GLR vs. GLR* on English Speech Input

increased from 1.6% for GLR to 21.4% for GLR* (19.8% increase). The percent of bad translations
significantly increased from 4.2% for GLR, to 45.3% of the sub-utterances for GLR*. However,
many of these bad translations are either due to errors of the speech recognizer, or are detectable
by the parse quality heuristic (see next set of tables).

In summary, the robustness results on the English test set shows that using GLR* results in a
30% increase in the number of acceptable translations produced by the system, of which at least
10% are perfect translations, while the rest are not perfect but acceptable.
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GLR GLR*
number percent number percent

Total Parsable
Marked Good 201 100.0% 330 100.0%
Parsable Good
w/Acceptable Translation 195 97.0% 306 92.7%
Parsable
Marked Bad 0 - 12 100.0%
Parsable Bad
w/Bad Translation 0 - 10 83.3%

Table 6.6 Accuracy Results: GLR vs. GLR* on English Transcribed Input

GLR GLR*
number percent number percent

Total Parsable
Marked Good 41 100.0% 133 100.0%
Parsable Good
w/Acceptable Translation 33 80.5% 89 66.9%
Parsable Good
w/Acceptable Translation
or Recognition Error 40 97.6% 128 96.2%
Parsable
Marked Bad 0 - 46 100.0%
Parsable Bad
w/Bad Translation 0 - 43 93.5%

Table 6.7 Accuracy Results: GLR vs. GLR* on English Speech Input

We next look at the effectiveness of the parse quality heuristic of the GLR* parser in identifying
good and bad parses on this test set. These results are presented in Table 6.6 and Table 6.7. On
the transcribed data (Table 6.6), 92.7% of the parses marked “Good” by the parse quality heuristic
produce acceptable translations. This compares with 97.0% of the clauses parsable by GLR that
result in acceptable translations. 10 out of 12 clauses marked by GLR* as “bad” (83.3%) result in
a bad translation.

On the speech recognized data (Table 6.7), the effectiveness of the parse quality heuristic to
identify bad parses is hindered by errors of the speech recognizer. Misrecognized times or dates,
for example, can result in a poor translation, while not seriously affecting the parsability of the
input. Thus, in total, parses marked as “Good” by the parse quality heuristic, produced acceptable
translations for only 66.9% of the time (compared with 80.5% of the clauses parsable by GLR that
produce acceptable translations). However, when errors that are completely due to poor recognition
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are considered acceptable, 96.2% of the clauses marked “Good” by the parse quality heuristic are
in fact acceptable (compared with 97.6% for GLR). Parses marked “Bad” by the parse quality
heuristic produced a bad translation in 93.5% of the time.

Evaluation on Grammatical vs. Ungrammatical Input

The evaluation results presented so far demonstrated the effectiveness of GLR* in dealing with
both noise and disfluencies in the input and limited grammar coverage. Although the GLR* parser
does not make a distinction between these two phenomena, it is useful and insightful to separately
evaluate the capabilities of the parser in handling each of these problems. In order to do so,
additional evaluations were conducted on the JANUS English input test set.

The test set was manually divided into two subsets - one consisting of input utterances that were
judged to be completely grammatical, and the other consisting of utterances that contained noise,
disfluencies or ungrammatical segments. Of the 360 clauses in the transcribed test set, 249 clauses
(69%) were judged as grammatical and 111 clauses (31%) were judged to be ungrammatical. The
speech recognized input set of 191 sub-utterances was divided into a subset of 34 sub-utterances
(18%) that were judged as grammatical and 157 sub-utterances (82%) judged as ungrammatical.

Table 6.8 and Table 6.9 show the results of our evaluation on the grammatical and ungrammatical
subsets for transcribed input. On the grammatical subset (Table 6.8), GLR parses 69.5% of the
clauses, while GLR* parses 96.8% of the clauses. Thus, about 30% of the grammatical clauses
cannot be fully parsed, due to grammar coverage limitations. GLR* succeeds in parsing all but
3% of these clauses (a gain of about 27%). On the ungrammatical subset (Table 6.9), GLR parses
only 25.2% of the clauses, while GLR* succeeds to parse 91.0%. In this case, the increase in
parsable clauses amounts to almost 66%. One would expect that none of the ungrammatical
clauses would be parsable by GLR. Yet 25% of the clauses are parsable in full. This is due to the
fact that our semantic grammar for the scheduling domain is flexible and tolerates some amount of
ungrammaticality. However, indeed most of the clauses (about 75%) cannot be parsed in full. By
skipping over some portion of the input, GLR* succeeds in finding a parse for all but 9% of these
clauses.

The second part of the tables compares the number of parses for which an acceptable translation
was generated. On the grammatical subset, GLR* produced acceptable translations for 90.0% of
the clauses, compared with 67.5% for GLR. Thus, by overcoming limitations in the grammar
coverage, GLR* produces over 22% more acceptable translations. This is also the case when only
the parses marked “Good” by the parse quality heuristic of GLR* are considered. The results on
the ungrammatical subset are rather similar. While GLR produced an acceptable translation only
24.3% of the time, GLR* did so in 51.4% of the time. Thus, by overcoming noise and speech
disfluencies (and some grammar coverage limitations), GLR* provides about 25% more acceptable
translations than GLR. The results are similar when only the parses marked “Good” by GLR* are
considered.

The third part of the tables examines the translation accuracy of GLR and GLR* on the test set.
For the grammatical subset, perfect translations were achieved for 148 clauses (59.4%) for GLR,
versus 170 clauses (68.3%) for GLR* (an increase of 8.9%). OK translations were produced for
20 clauses (8.0%) for GLR, versus 54 clauses (21.7%) for GLR* (an increase of 13.7%). GLR
produced bad translations for only 5 clauses (2.0%), while GLR* did so for 17 clauses (6.8%),
a difference of 4.8%. For the ungrammatical subset, the percent of perfect translations increased
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GLR GLR* Difference
number percent number percent number percent

Total Clauses 249 100.0% 249 100.0% - -
Parsable 173 69.5% 241 96.8% 68 27.3%
Unparsable 76 30.5% 8 3.2% 68 27.3%
Parsable with
Accept. Trans. 168 67.5% 224 90.0% 56 22.5%
Parsable
Marked Good
w/Accept. Trans. 168 67.5% 223 89.6% 55 22.1%
Perfect Trans. 148 59.4% 170 68.3% 22 8.9%
OK Translations 20 8.0% 54 21.7% 34 13.7%
Bad Translations 5 2.0% 17 6.8% 12 4.8%

Table 6.8 GLR vs. GLR* on Grammatical English Transcribed Input

GLR GLR* Difference
number percent number percent number percent

Total Clauses 111 100.0% 111 100.0% - -
Parsable 28 25.2% 101 91.0% 73 65.8%
Unparsable 83 74.8% 10 9.0% 73 65.8%
Parsable with
Accept. Trans. 27 24.3% 84 75.7% 57 51.4%
Parsable
Marked Good
w/Accept. Trans. 27 24.3% 83 74.8% 56 50.5%
Perfect Trans. 17 15.3% 42 37.8% 25 22.5%
OK Translations 10 9.0% 42 37.8% 32 28.8%
Bad Translations 1 0.9% 17 15.3% 16 14.4%

Table 6.9 GLR vs. GLR* on Ungrammatical English Transcribed Input

from 15.3% for GLR to 37.8% for GLR* (22.5% increase), and the percent of OK translations
increased from 9.0% for GLR to 37.8% for GLR* (28.8% increase). The percent of bad translations
increased from 0.9% for GLR, to 15.3% of the clauses for GLR*. However, as seen earlier, many
of the bad translations are detectable by the parse quality heuristic.

Table 6.10 and Table 6.11 show the results of our evaluation on the grammatical and ungram-
matical subsets for speech recognized input. On speech recognized input, a much larger portion of
the test set (82%) belongs to the ungrammatical subset. This is due to errors of the speech recog-
nizer that corrupt many of the utterances. On the grammatical subset, using GLR* results in about

120



GLR GLR* Difference
number percent number percent number percent

Total Clauses 34 100.0% 34 100.0% - -
Parsable 27 79.4% 34 100.0% 7 20.6%
Unparsable 7 20.6% 0 0.0% 7 20.6%
Parsable with
Accept. Trans. 26 76.5% 33 97.1% 7 20.6%
Perfect Trans. 26 76.5% 30 88.2% 4 11.7%
OK Translations 0 0.0% 3 8.8% 3 8.8%
Bad Translations 1 2.9% 1 2.9% 0 0.0%

Table 6.10 GLR vs. GLR* on Grammatical English Speech Recognized Input

GLR GLR* Difference
number percent number percent number percent

Total Clauses 157 100.0% 157 100.0% - -
Parsable 12 7.6% 144 91.7% 132 84.1%
Unparsable 145 92.4% 13 8.3% 132 84.1%
Parsable with
Accept. Trans. 6 3.8% 59 37.6% 53 33.8%
Perfect Trans. 4 2.5% 21 13.4% 17 10.9%
OK Translations 2 1.3% 38 24.2% 36 22.9%
Bad Translations 6 3.8% 85 54.1% 79 50.3%

Table 6.11 GLR vs. GLR* on Ungrammatical English Speech Recognized Input

a 21% gain in both parsable sub-utterances and acceptable translations. On the ungrammatical
subset, the gain in parsable sub-utterances is over 84%, while acceptable translations increase by
almost 34%.

GLR* Compared with Phoenix

Table 6.12 shows the results of the end-to-end performance evaluation that compared GLR* with
the Phoenix parser on English transcribed and speech data. The same test set of 99 utterances that
was used in the GLR versus GLR* evaluation was used. Both GLR* and Phoenix used the same
pre-breaking methods. End-to-end translation results were evaluated on a complete utterance level.

The end-to-end translation performance of GLR* and Phoenix on the English test set was
quite similar. On both transcribed and speech input, the percentage of utterances with acceptable
translations using Phoenix was slightly better than the corresponding figure when using GLR*. On
transcribed input, GLR* produces acceptable translations for 83.9% of the utterances, versus 85.5%
for Phoenix. On speech input, GLR* has acceptable translations for 44.5% of the utterances, while
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GLR* Phoenix
Transcribed Speech Transcribed Speech

Input Recognized Input Recognized
Parsable 100.0% 100.0% 99.0% 100.0%
Unparsable 0.0% 0.0% 1.0% 0.0%
Perfect
Translation 45.5% 18.2% 48.0% 19.8%
OK
Translation 38.4% 26.3% 37.5% 26.0%
Acceptable
Translation 83.9% 44.5% 85.5% 45.8%
Bad
Translation 16.1% 12.1% 13.5% 11.5%
Poor
Recognition - 43.4% - 42.7%

Table 6.12 Performance Results of GLR* vs. Phoenix on
English Input (14 dialogs, 99 utterances, 07-14-95)

Evaluation Date
17-03-95 24-04-95 01-05-95 09-06-95 16-06-95
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Phoenix has acceptable translations for 45.8%. For both transcribed and speech input, Phoenix had
slightly more translations that were judged as “Perfect”, while GLR* had slightly more translations
judged as “OK”.

Figure 6.5 shows a comparative plot of the performance of GLR* and Phoenix over a sequence
of several recent evaluations on transcribed input. The graph in the figure indicates the percent of
utterances for which an acceptable translation was produced in each of the evaluations.

6.5.4. Discussion of Results

Robustness

The analysis of the robustness evaluations, that compared GLR* with the original GLR parser,
demonstrate that GLR* is far better suited to the parsing of both transcribed and recognized
spontaneous speech of the kind processed by the JANUS system. The most meaningful measure of
performance is the percentage of acceptable end-to-end translations that are produced by the system
with each of the parsers. On transcribed input, GLR* produced 13% more acceptable translations
than GLR on the Spanish test set, and 31% more acceptable translations on the English test set. A
similar increase of about 30% was measured on English speech recognized input. Most of these
additional acceptable translations are not perfect. On the Spanish test set, an increase of only
2.5% in the number of target ILT matches was measured. On the English transcribed test set, the
number of perfect translations increased by about 13%, and on the English speech set it increased
by about 11%. Thus, although the vast majority of the additional acceptable translations found by
GLR* are not perfect or complete, they still reflect the fundamental meaning being conveyed by
the speaker. Cases where the portions of the input that were skipped by GLR* are important to the
meaning of the utterance can be detected quite effectively by the parse quality heuristic that is used
in conjunction with GLR*.

The additional evaluations on grammatical versus ungrammatical subsets of the English test set
provided further insight on the capabilities of the GLR* parser. The performance results on the
grammatical subset demonstrate that GLR* is very effective in overcoming the problem of limited
grammar coverage. The percentage of acceptable translations for transcribed grammatical clauses
increased from 68% using GLR, to almost 90% using GLR*. While the grammar fails to fully
cover about one third of the clauses in the test set, GLR* obtains a good “approximate” parse for
many of these clauses, by skipping over minor portions of the input. The segments that are skipped
often have only minor semantic significance and are not crucial to the translation task at hand. Only
in 10% of the clauses did the skipping performed by GLR* result in an unacceptable translation.
This appears to indicate that using GLR* in conjunction with a grammar of reasonably adequate
coverage can result in very high levels of performance, where minor unimportant portions of the
input that are not covered by the grammar are detected by the parser and ignored. Thus, GLR*
should prove to be very useful in overcoming grammar coverage problems in other tasks, where
input is for the most part grammatical, but complete parsability is not crucial.

The performance results on the subset of ungrammatical clauses highlight the robustness that
GLR* provides against the noise and disfluencies that are typical of spontaneously spoken language.
Almost one third of the transcribed clauses were judged as ungrammatical, thus containing some
form of noise or disfluency. While GLR produces an acceptable translation for only 24% of these
clauses, GLR* impressively does so for almost 76% of the clauses. These results indicate that most
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of the ungrammatical utterances in our domain contain largely grammatical structures, sparsely
surrounded by noise and disfluencies. GLR* is very successful in ignoring these phenomena and
extracting the underlying grammatical structure that reflects the meaning of the utterance.

It is also interesting to compare the performance results of GLR* on transcribed input with
the corresponding results on speech recognized input. At first glance, the speech performance
results appear to be rather disappointing. Speech recognition errors often prohibit the parser from
finding a correct analysis for the input utterance, and this results in far lower performance on
speech recognized input. Whereas for transcribed input, GLR* produced an acceptable end-to-end
translation in about 85% of the time on the unseen English test set, the comparable performance with
speech recognized input on the same test set was only 46%. Furthermore, a speech recognition error
was identified as the primary cause of a parsing failure in about 87% of all bad parses. However, a
separate analysis of the performance of the speech recognizer on this test set revealed that the word
accuracy rate was about 65%, and of the 99 utterances in the test set, only 4 (rather short) utterances
were completely free of recognition errors. Consequently, over 80% of the English test set speech-
recognized sub-utterances were judged as ungrammatical, mostly due to speech recognition errors.
While the GLR parser is virtually incapable of handling any of these sub-utterances (producing
an acceptable translation less than 4% of the time), GLR* produced an acceptable translation for
almost 38% of the ungrammatical speech recognized sub-utterances. This indicates that while
overcoming speech recognition errors is a major problem that must be addressed (see Chapter 7),
the GLR* parser’s robustness to noise and disfluencies provides a very significant performance
boost.

Accuracy

Because of the word skipping nature of GLR*, the quality of the parses that are found by the
parser is bound to be somewhat lower than the quality of the parses found by GLR, where parsable
input is completely grammatical. The parse quality heuristic that is used with GLR* turns out
to be fairly effective in detecting parses where important portions of the input were skipped by
the parser. Parses marked as “Bad” by the heuristic are indeed not acceptable in 85% of the time
on Spanish transcribed input, 83.3% on English transcribed, and 93.5% on English speech input.
Whereas the portion of acceptable translations out of the transcribed utterances parsable by GLR
was 95% on Spanish and 97% on English, the equivalent portions of acceptable parses out of the
parses marked “Good” by GLR* was 86% on Spanish and 93% on English. On English speech
input, 96% of the parses marked “Good” are either acceptable, or are bad solely due to errors of
the speech recognizer.

The differences between GLR and GLR* in robustness and accuracy can be viewed as a classic
example of the tradeoff between precision and recall. In order to achieve the higher level of
accuracy (precision), GLR must sacrifice a large degree of robustness (recall). By using the parse
quality heuristic, we try to strike a reasonable balance in this tradeoff.

Utility

The evaluations comparing GLR* with Phoenix on both the Spanish and English test sets indicate
that the portion of acceptable translations produced with each of the parsers is very similar. On
the Spanish transcribed test set, GLR* is slightly better (78.7% versus 75% for Phoenix), while on
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English transcribed data, Phoenix is slightly better (85.5% versus 83.9% for GLR*). On speech
recognized data, Phoenix performed slightly better than GLR* in both Spanish and English. It
should be noted that these slight performance differences should not be regarded as statistically
significant. The translation quality evaluations are conducted manually by the grammar developers
of each of the parsers, and are thus subjective. Although the grading is cross validated (the two
grammar developers for each language grade the output from both GLR* and Phoenix, and the
results are then averaged), subjective differences in judgement between the graders have repeatedly
amounted to 5% or more.

However, the two parsing architectures do have some clear strengths and weaknesses. Although
not quite evident from the evaluations reported here, tests conducted during earlier stages of the
development of the grammars appeared to indicate that even though the total portion of acceptable
translations produced by both parsers is similar, GLR* tended to produce more perfect translations,
while phoenix produced more translations that were merely OK. This appeared to indicate that
GLR* was somewhat more accurate and Phoenix was somewhat more robust.

GLR* tends to break down when parsing long utterances that are highly disfluent, or that
significantly deviate from the grammar. In many such cases, GLR* succeeds to parse only a small
fragment of the entire utterance, and important input segments end up being skipped. Phoenix is
significantly better in analyzing such utterances. Because Phoenix is a chart parser that is capable
of skipping over input segments that do not correspond to any top level semantic concept, it can
far better recover from out of domain segments in the input, and “restart” itself on the in-domain
segment that follows. However, the pre-breaking procedures that we use in conjunction with GLR*
have significantly reduced this problem, since long utterances are broken into shorter sub-utterances
that are parsed separately. Pre-breaking benefits Phoenix only slightly, mainly due to some better
resolution of time expression attachment ambiguities. At the current time, Phoenix uses only
very simple disambiguation heuristics, and does not have a mechanism similar to the parse quality
heuristic of GLR*, which allows the parser to self-assess the quality of the produced result.

Because, each of the two parsing architectures appears to perform better on different types of
utterances, they may hopefully be combined in a way that takes advantage of the strengths of each
of them. One strategy that we have investigated is to use Phoenix as a back-up parser to GLR*.
The parse result of GLR* is used whenever it is judged by the parse quality heuristic to be “Good”.
Whenever the parse result from GLR* is judged as “Bad”, the translation is generated from the
corresponding output of the Phoenix parser. Initial test evaluations using this strategy have come
up with mixed results. Our conclusion has been that such combination schemes need to be further
investigated.

6.6. GLR* Performance on ATIS Domain

In this section we analyze a performance evaluation of the GLR* parser on data in the ATIS
domain. Whereas the analysis grammars we use in the scheduling domain of the JANUS project
are semantic grammars, the grammar developed for the ATIS domain is syntactic. The evaluation
was performed on top-best hypotheses of the speech recognizer. The ATIS setup of the GLR*
parser attempts to recover from recognition substitution errors by using a simple word confusion
matrix. We evaluate the robustness and accuracy of GLR* in this domain, by comparing it with a
similar evaluation using GLR, the original non-robust version of the parser.
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GLR GLR* Difference
number percent number percent number percent

Total Test Set 120 100.0% 120 100.0% - -
Parsable 62 51.7% 119 99.2% 57 47.5%
Unparsable 58 48.3% 1 0.8% 57 47.5%
Acceptable
Parses 60 50.0% 73 60.8% 13 10.8%
Marked Good
w/Acceptable Parse 60 50.0% 71 59.2% 11 9.2%

Table 6.13 Robustness Results: GLR vs. GLR* on ATIS Speech Input

GLR GLR*
number percent number percent

Total Parsable
Marked Good 62 100.0% 96 100.0%
Marked Good
w/Acceptable Parse 60 96.8% 71 74.0%
Parsable
Marked Bad 0 - 23 100.0%
Marked Bad
w/Bad Parse 0 - 21 91.3%

Table 6.14 Accuracy Results: GLR vs. GLR* on ATIS Speech Input

The details of the grammar developed for the ATIS domain were previously described in
section 4.6.1. A set of 300 sentences were used for grammar development and 250 of these
sentences were used for training the parser disambiguation statistics. A list of common appearing
substitutions was constructed from the development set. The parameters of the parse evaluation
heuristics and the parse quality heuristic were set in the way described in section 5.5.2.

For evaluation, we used a set of 120 unseen speech recognized sentences. This is the same test
set that was used in the evaluations described in section 4.6.1 and section 5.5.2. Parse results were
evaluated by hand to determine whether the selected parse was acceptable.

The results comparing GLR and GLR* on ATIS were analyzed in a similar fashion to the
JANUS evaluations. Table 6.13 looks at robustness by comparing the parsing coverage of both
parsers. Table 6.14 compares the parsing accuracy of GLR and GLR*. Once again, the robustness
results indicate a substantial gain in coverage when using GLR*. The portion of parsable sentences
increased from 51.7% for GLR to 99.2% for GLR*. However, the portion of parsable sentences
with an acceptable parse increased only by 10.8% (from 50.0% for GLR, to 60.8% for GLR*). The
accuracy results in Table 6.14 were already presented in Table 5.4. The results indicate that while
the portion of bad parses out of the parses marked “Bad” by the parser is still very high (91.3%),
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the parse quality heuristic is somewhat less effective on parses marked “Good”. Only 74% of
the parses marked “Good” were in fact acceptable. Further inspection, however, indicated that
11 marked “Good” sentences had bad parses due to incorrect ambiguity resolution. If the correct
ambiguity were chosen for these parses, the portion of good parses out of parses marked “Good”
would reach 85%, similar to the comparable figures found in the JANUS evaluations.
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Chapter 7

Parsing Speech Lattices using GLR*

7.1. Introduction

In the previous chapter, we investigated the performance of GLR* on parsing spontaneously spoken
utterances, on both transcribed input as well as on best scoring hypotheses produced by our speech
recognition system. The motivation for processing transcribed speech is that it allows us to separate
the difficulties inherent in parsing spontaneous speech from the types of errors that are introduced in
the speech recognition process. Transcribed input can be viewed as “optimal” speech recognition,
and the parsing performance achieved on transcribed input can thus be seen as an upper-bound on
the expected performance of the system when processing actual speech input.

However, in practice, the top-best hypotheses produced by our speech recognition system are
far from perfect. Speech recognition errors hinder the ability of the parser to find a correct analysis
for the utterance, and the effects of this are reflected in the disparity between our performance
results on transcribed and speech recognized input. Whereas with transcribed input, the JANUS
system using GLR* produced an acceptable end-to-end translation about 85% of the time on an
unseen English test set, the comparable performance with speech recognized input on the same
test set was only 46%. In fact, a speech recognition error was identified as the primary cause of
a parsing failure in about 87% of all bad parses. A separate analysis of the performance of the
speech recognizer on this test set revealed that the word accuracy rate was about 65%, and of the
99 utterances in the test set, only 4 (rather short) utterances were completely free of recognition
errors.

The speech recognition process produces multiple hypotheses for a given speech utterance,
which can be most efficiently represented in the form of a word lattice. Each hypothesis corre-
sponds to a path of connecting words through the lattice. It is often the case that a more accurate
recognition path exists through a lattice, even though it is not the best scoring hypothesis in the
lattice. Processing multiple speech hypotheses instead of a single hypothesis thus has the potential
of detecting a hypothesis with fewer recognition errors, which should lead to an improvement in
the overall translation performance.

In this chapter, we investigate how GLR* can be adapted into a parser capable of directly parsing
speech produced word lattices. We begin with a deeper analysis of the possible interface methods
between the speech recognition system and the language processing components, and emphasize
the potential advantages of using a lattice processing parser. We then describe the modifications to
the GLR* parsing algorithm that are necessary in order to adapt it to parsing word lattices. Next,
we describe how GLR* is incorporated into a version of the JANUS system that processes word
lattices. This is followed by an example of how the lattice processing system works. Finally, we
present a preliminary evaluation of the lattice processing version of the JANUS system.
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7.2. The Advantages of Parsing Speech Lattices

In the design of a system like JANUS, choices have to be made about how best to combine the
speech recognizer with the language processing. The most simple interface is the one we have seen
in the previous chapter, where the speech recognition system, operating independently, chooses
a single hypothesis that it deems best, and then passes this hypothesis to the parser for analysis.
The main drawback of this method is that the accuracy of the top-best speech hypothesis puts an
a-priori limit on the accuracy of the analyses produced by the parser. Errors introduced in the
speech recognition stage cannot be corrected in the language analysis stage. Furthermore, only
limited linguistic knowledge (a bigram or trigram language model) is applied in the course of
speech recognition. The much stronger grammatical constraints are applied only in the course of
parsing, after the “best” speech hypothesis has already been selected. Tighter integration between
the speech recognizer and the parser has the potential of applying the linguistic knowledge encoded
in the grammar into the speech recognition process, in order to improve the end-to-end performance
of the system, as well as the quality of the speech recognition process itself. The basic premise
behind such an approach is that applying the linguistic constraints encoded by the grammar on a
set of possible speech hypotheses can help determine a more accurate hypothesis (or possibly a
hypothesis with less “important” errors).

Tighter integration between the speech recognizer and the parser has received growing attention
in the last few years. We have already mentioned some of the more notable works on this problem
in section 1.3.2. An overview of the most common approaches to this problem can be found in [29]
and [102]. The following are the four major conceptually different ways in which such a tighter
integration between the speech recognition and grammatical constraints can be achieved:

1. Incorporate grammar constraints directly into the speech search:
This is perhaps the most direct and attractive approach, but turns out to be technically very
difficult. In particular, it is unclear how flexible grammatical constraints, such as those
resulting from the skipping capabilities of GLR*, can be efficiently integrated directly into
the speech recognition’s search algorithm. Nevertheless, there has been some recent work on
integrating grammatical constraints into the speech search using standard parsing techniques.
Hauenstein and Weber [30], for example, investigate several ways in which this can be done.

2. Attempt to correct the top-best hypothesis of the recognizer:
The idea here is to use the grammar during parse time to try and correct speech recognition
errors, by inserting, deleting or substituting words from the speech hypothesis. GLR* can in
fact be viewed as partially following this approach. The word skipping capabilities of GLR*
allow it to delete words from the speech hypothesis. GLR* can also handle substitutions by
using a confusion matrix. The matrix lists possible alternatives for words that are frequently
misrecognized by the speech recognizer, and the parser attempts to substitute the speech
recognized word with each of its alternatives (incurring a penalty for the substitution), in
search for the most grammatical option. Tests we conducted using GLR* with a substitution
matrix on ATIS data showed a slight improvement in performance. Attempting to correct
words that were deleted from the speech hypothesis by allowing the parser to consider
insertions appears to be infeasible in the context of large real-world grammars covering a
reasonably large domain, as is the case in the JANUS project. It is therefore difficult to
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develop mechanisms that can effectively use the constraints of the grammar to post correct
speech recognition errors.

3. Parse the n-best hypotheses produced by the speech recognizer:
This approach is technically simple, but inefficient. In this case, we extract a ranked list of
the 
 best hypotheses found by the speech recognizer and use the parser to parse each of
them. If we wish to require that the hypothesis be completely grammatical, the parser can
be used as a filter, ruling out ungrammatical hypotheses, so that the best scoring hypothesis
that is also grammatical can be selected. However, using the more flexible grammaticality
constraints of GLR* should allow us to successfully parse most of the hypotheses. The
score of the best parse found for each hypothesis should reflect the grammatical preferences
between the various hypotheses. The parse score can then be combined with the score from
the speech recognizer, in order to re-rank the list of parse results, so that the overall “best”
one is ranked first.

The main drawback of this method is its inefficiency. In order to significantly improve
the accuracy of the system, a large number of hypotheses must be considered. However,
parsing an n-best list of hypotheses increases the overall parsing time by a factor of 
 . Thus,
the number of hypotheses that can be considered is limited, if the system is to perform
within reasonable bounds on time and space. Furthermore, although many of the different
hypotheses on the n-best list differ only slightly, each of the hypotheses is parsed in its
entirety. Thus, segments that are common to many different hypotheses are parsed multiple
times.

4. Parse the speech lattice directly:
Parsing the speech lattice directly attempts to efficiently accomplish the same results of
parsing an n-best list. Instead of first extracting the list of hypotheses from the speech lattice,
and then parsing each of them separately, we use a version of the parser that can parse the
lattice directly. Each complete path of connecting words through the lattice corresponds to a
hypothesis. The speech score of a hypothesis is the sum of the scores of the words of which
it consists. The top-best speech hypothesis corresponds to the path through the lattice that is
minimal in its overall score. Each word in the lattice is parsed only once, although it may
contribute to many different hypotheses. The lattice parser produces a large set of possible
parses, corresponding to the parses of various complete word paths through the lattice. This
set of parses can be scored and ranked according to the parse score, or according to some
optimized combination of the parse score and recognizer score.

We chose to follow this fourth approach. Since the actual raw lattices produced by the speech
recognizer are often too large and redundant to be parsed directly, we have developed a pre-
processor that produces a significantly pruned lattice of a size that can be parsed within reasonable
time and space. The lattice pre-processor is described in section 7.4. Parsing the pruned lattice is
still generally equivalent to the parsing of a fairly large n-best list of hypotheses.

A small portion of a typical speech lattice can be seen in Figure 7.1. The nodes of the graph
represent start or end points of lattice words. The words themselves are marked on the arcs of the
graph. A score is associated with each of the lattice words. This score is a combination of an
acoustic score which is derived from speech models used for the speech recognition, and a language
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Figure 7.1 Small Portion of a Speech Lattice

(1) YOUR LATER THAT WEEK IS NOT GOOD FOR YOU (score: 72.683)
(2) YOUR LATER THAT WEEK IS NOT GOOD FOR YOU #NIB# (score: 72.828)
(3) YOUR LATER THAT WEEK IS A GOOD FOR YOU (score: 72.848)
(4) YOUR #NIB# EITHER THAT WEEK IS NOT GOOD FOR YOU (score: 72.855)
(5) YOUR LATER IN THAT WEEK IS NOT GOOD FOR YOU (score: 72.904)
(6) YOUR EITHER THAT WEEK IS NOT GOOD FOR YOU (score: 72.908)
(7) YOUR LATER #NIB# THAT WEEK IS NOT GOOD FOR YOU (score: 72.913)
(8) YOUR LATER THAT WEEK IS NO GOOD FOR YOU (score: 72.916)
(9) YOUR EARLIER THAT WEEK IS NOT GOOD FOR YOU (score: 72.982)
(10) YOUR LATER THAT WEEK IS A GOOD FOR YOU #NIB# (score: 72.993)

Figure 7.2 10-best List Corresponding to the Example Speech Lattice

model probability. Each complete path of connecting words through the lattice corresponds to a
hypothesis. Typical large speech lattices produced by our speech recognition system often have
hundreds or even thousands of embedded hypotheses. A simple dynamic programming procedure
can extract the best 
 hypotheses from a lattice (for any given 
 ). Figure 7.2 shows the ranked
list of the ten best hypotheses that were extracted from the small lattice in Figure 7.1. In total, 36
different hypotheses are represented in the lattice.

7.3. The GLR* Lattice Parsing Algorithm

7.3.1. Input Representation and Parsing Order

In the string parsing version of GLR*, the input to the parser is simply the linear string of words.
The parser then parses the input in a left-to-right order, and the position of each word within the
string can be easily inferred implicitly. However, in the lattice parsing version, each input word
must be explicitly marked by its start and end points in the lattice. The input words thus have the
form ���G	������ � � , where � is the actual word, � is the start point, and � is the end point. Although not
essential for parsing, we also attach the acoustic score from the speech recognizer to each input
word, so that this information will be easily accessible to a post-parsing procedure that combines
the parse score and the acoustic score of the parse results.
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For the lattice parser to function correctly, it is essential that the words of the lattice be parsed
in a proper order. The start and end points of the words define a partial order between them. In
essence, ��� 1 	�� 1 ��� 1

� � | ��� 2 	�� 2 ��� 2
� � if there exists some path through the lattice in which ��� 1 	�� 1 ��� 1

� �
appears prior to ��� 2 	�� 2 ��� 2

� � . In such a case, there exists a path of words that connects points � 1 and
� 2 in the lattice, and this can be detected by a procedure that checks the connectivity of points in the
lattice. If ��� 1 	�� 1 ��� 1

� � | ��� 2 	�� 2 ��� 2
� � , then ��� 1 	�� 1 ��� 1

� � must be parsed prior to ��� 2 	�� 2 ��� 2
� � . If there

is no path in the lattice between � 1 and � 2 (or vice versa), then the order relation between the two
lattice words is not defined, and there are no constraints as to which of the words should be parsed
first. A simple procedure can therefore verify that the lattice words are properly ordered prior to
parsing.

7.3.2. Modifications to the Algorithm

Before we describe the modifications that adapt the GLR* parsing algorithm to parsing speech
lattices, let us first recall some important details about the GLR* parsing algorithm, that were pre-
viously described in Chapter 3. The major difference between the original GLR parsing algorithm
and GLR* is in the distribution of shift actions to nodes of the GSS. GLR* accommodates skipping
words of the input by allowing shift operations to be performed from inactive state nodes of the
GSS. Shifting an input symbol from an inactive state node has the effect of skipping the words of
the input that were processed after the creation of the state node and prior to the current word that
is being shifted.

At each stage of the algorithm, the search heuristics control the distribution of shift actions to
the state nodes of the GSS. Shift actions are first distributed to the active state nodes of the GSS.
This corresponds to no additional skipped words at this stage. If the number of distributed shift
actions at this point is less than the beam-width, shift actions are distributed to inactive state nodes
as well. State nodes of the GSS have a level field, which contains the index of the last input word
processed when the node was created. When distributing shift actions, inactive states are processed
in decreasing level order, so that shift actions from more recent state nodes (with higher levels) that
result in fewer skipped words are considered first. Shift operations are distributed to inactive state
nodes in this way until the number of shifts distributed reaches the beam-width.

Each symbol node of the GSS has a span field containing a start and end point, which reflect the
segment of the input that is covered by the symbol. The symbol nodes also maintain information
about skipped words. When a reduce operation creates a new symbol node, the information about
words that were skipped in between the right-hand side constituents of the grammar rule, as well
as within the constituents themselves, is accumulated and attached to the new symbol node. The
words that were skipped in between the right-hand side constituents are determined using the start
and end points of each of the constituents.

The Distribution of Shift Actions

In the lattice parsing version of GLR*, the shift distribution step was modified to handle lattice
input words. Let us consider the DISTRIBUTE-SHIFT step of a lattice word ����	������ � � . Similar
to the string parsing version of GLR*, shift actions must first be distributed to state nodes that do
not result in any new skipped words. This is accomplished by first distributing shift actions to all

132



GSS state nodes of level � , since such nodes were created in the course of processing a previous
lattice word of end point � , which directly connects with the current word being processed.

Once shift actions have been distributed to all state nodes of level � , if the number of shift actions
distributed has not already acceded the beam-limit, state nodes of levels less than � are considered
as well. Similar to the string parsing version, shift actions are distributed in an ordered fashion,
where state nodes that result in fewer skipped words are considered first. This is done by first
detecting all levels that correspond to words of distance one from the current word. Shift actions
are then distributed to state nodes of these levels. If the total number of shift actions distributed is
still below the beam-limit, we proceed to find the levels that correspond to words of distance two,
and distribute shift actions to the state nodes of these levels as well. This process continues until
the total number of distributed shift actions reaches the beam-limit.

Determining Word Connectivity and Lattice Paths

In the string parsing version of GLR*, the input string can be viewed as degenerate lattice that
consists of a single connected path of input words ��� _ 	��@L 1 ��� � � , for 1 �N�<��
 (where 
 is the
length of the input). In such a string, for any � and � such that � | � | 
 , there exists a unique path
from word � to word � in the string. Thus, shifting word ��� from a state node of level � has the
effect of skipping a precise set of words, namely � _ � 1

b>b-b ��� } 1.

When dealing with a general word lattice, determining word connectivity and lattice paths is
more complicated. For two arbitrary words ��� 1 	�� 1 ��� 1

� � and ��� 2 	�� 2 ��� 2
� � in the lattice, there could

be zero, one, or multiple paths of lattice words that connect them. If no path exists between the two
words, special care must be given not to shift the second word from state nodes that were created
after processing the first word (since this cannot correspond to any valid word skipping). On the
other hand, if ��� 1 	�� 1 ��� 1

� � appears in the lattice prior to ��� 2 	�� 2 ��� 2
� � , and there exist multiple word

paths between the two words, then shifting the second word from state nodes of level � 1 is valid,
but each path between the words corresponds to a different sequence of skipped words.

The lattice parsing version of GLR* thus includes a procedure for determining the connectivity
of two points in the lattice. Since the connectivity property is transitive and can be calculated
recursively, a hash table is used to store the connectivity status of previously computed pairs of
lattice points, so that the connectivity of a pair of lattice points will be calculated at most once.

We also developed a procedure for finding the “best” connecting path between two lattice
points. Since this procedure is used to select between alternative sequences of skipped words, the
“best” path is one for which the combined penalty for skipping the words is the smallest. This
procedure is used in order to determine information about skipped words for the symbol nodes of
the GSS. When a reduce operation creates a new symbol node, the information about words that
were skipped in between the right-hand side constituents of the grammar rule is determined using
the start and end points of each of the constituents. For example, assume the rule being reduced has
the form �R0 ��� and that the end point of the symbol node associated with � is � , while the start
point of symbol node � is � . If ���?G� , then words were skipped between the two constituents. We
use the above mentioned procedure in order to determine the sequence of skipped words between
points � and � that has the smallest penalty.
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Other Modifications to the Parser

Several other minor modifications to the parser should be mentioned. An additional field was added
to the symbol node structure, in order to keep track of the set of lattice words that are “covered” by
the symbol. This set contains all the words that were actually parsed in the sub-parse tree rooted
by the symbol. When a reduce operation creates a new symbol node, the set of covered words of
a new symbol is accumulated from the right-hand side constituent’s symbol nodes. For example,
assume the rule being reduced has the form ��0 �R� , then the set of covered words of the symbol
associated with � is just the union of the covered words of the symbols associated with � and � .
The union of the sets of skipped and covered words of a symbol corresponds to the sub-path in
the lattice that was parsed in the process of creating the symbol node. Thus, at the top level, each
“start” symbol node that corresponds to a complete parse will contain the information about the
full path through the lattice (i.e. hypothesis) to which it corresponds.

The ambiguity packing procedure of the parser was also slightly modified. Two symbol nodes
of the same grammar category can be packed by the lattice parser only if they both correspond to a
parse of the exact same sub-path in the lattice. Thus, the union of the set of covered and skipped
words of both symbol nodes must be the same. However, the pruning heuristic that was used in the
ambiguity packing procedure of the string version of GLR* is used here as well. In other words,
if two symbol nodes " 1 and " 2 are packable, but " 1 has more skipped words than " 2, then " 1 is
simply discarded and the two nodes are not actually packed together.

7.4. The Lattice Processing Version of JANUS
The lattice parsing version of GLR* has been incorporated into a lattice processing version of
the JANUS system. This required some changes in the configuration of the system. For each
input utterance, instead of producing a top-best hypothesis or an n-best list, the speech recognition
module outputs a complete scored word lattice. The lattice produced by the speech recognizer
is usually far too large to be parsed in its entirety. It is therefore passed to a lattice processor,
which breaks it into smaller sub-lattices and prunes each sub-lattice to a parsable size. Each of the
sub-lattices is then separately parsed by the lattice parser. A post-parsing procedure then combines
the results of parsing the sub-lattices into a ranked list of output results which is passed on to the
discourse processor and to the generation module. The details of the lattice processor and the
post-parsing processing are described in the following subsections.

7.4.1. Lattice Pre-processing

The “raw” lattices produced by the speech recognizer are most often far too large and redundant
to be parsed in feasible time and space. Such lattices usually correspond to thousands of different
speech hypotheses. The speech lattice thus has to be significantly pruned in order to be parsed. For
this task, we use a lattice processor developed by Oren Glickman for the JANUS project [26]. The
processing of the lattice is done in the following four major steps:

1. Collapsing of Noise-words:
The lattice from the speech recognizer contains different kinds of noise-words, including
speech modelled pauses, as well as human and non-human noises. Since no linguistic
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Figure 7.3 Breaking of a Speech Lattice

information is contained in these lattice words, they will be skipped and ignored by the
parser. Paths in the lattice that differ only in noise-words are therefore redundant to the
parser, and should be pruned. This stage of the lattice processor therefore first maps all
lattice noise-words into a single generic pause. Adjacent pauses are then joined to one long
pause word. We then search for sets of redundant paths in the lattice. Two paths through the
lattice are redundant if they begin and end in the same nodes, and contain the same sequence
of words. Only the acoustically highest scoring path of each set of redundant paths is kept,
and the other paths in the set are removed from the lattice. It should be noted that no linguistic
information is lost in the course of noise-word collapsing.

2. Lattice Breaking:
In the string parsing version of GLR*, utterances are pre-broken into smaller sub-utterances
that correspond to one or several clauses. The sub-utterances are then parsed separately,
significantly reducing the ambiguity facing the parser in determining clause boundaries. For
similar reasons, it is useful to break the lattice of a complete utterance into sub-lattices. The
lattice is broken at time intervals where only pauses and noise-words appeared in the speech
signal, and where the length of the pause acceded a pre-determined threshold. The threshold
is tuned to produce optimal breaking, where the emphasis is to reduce the number of false
positives (breaks at places that are not clause boundaries) as much as possible. An example
of a lattice before and after breaking can be seen in Figure 7.3. In the original lattice at
the top of the figure, a “cut” can be made between the sub-lattice that end in nodes 5 and
6, and the sub-lattice that starts in nodes 7, 8 and 9. This is because the cut crosses only
pause words, all of which have a length that is greater than the threshold. The resulting two
sub-lattices appear at the bottom of the figure.

3. Lattice Rescoring:
Since the noise-word collapsing step condenses the lattice so that it contains less noise-
words and more linguistically important information, the new lattice (or the sub-lattices
after breaking) can be rescored, using either the same language model that was used for the
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original lattice, or a new language model. Due to the noise-word collapsing, words that were
not adjacent in the original lattice may have become adjacent in the new lattice. As a result,
different bigram probabilities may effect the scores attached to the words. The rescoring may
therefore change the ranking of alternative paths through the lattice. At the current time, this
rescoring step has not yet been fully implemented into the lattice processor.

4. Lattice Pruning:
In the last step of the lattice processing, each of the sub-lattices is pruned, to ensure that each
sub-lattice is of a size that can be parsed in reasonable time and space. The pruning process
removes words from the lattice one at a time in an ordered way. The intent is to remove
words that contribute to bad scoring hypotheses first. For each word, a dynamic programming
procedure determines the score of the best lattice path in which the word appears. The words
are then pruned according to this score, in descending order. The procedure allows the user
to specify the desired size of the pruned lattice, in terms of either an absolute size or a
percentage of the size of the original lattice.

7.4.2. Post-parsing Processing

For each parsed sub-lattice, the parser returns a list of packed parses that were found. This list is
ranked according to the score that the parser attaches to each of the alternative parse results. Parses
that correspond to different lattice paths are not packed together, and thus appear separately on the
list of parses found. By default, when the parser is run on a stand alone basis, the best scoring
parse on the list of parses is unpacked and disambiguated, and the result is displayed to the user.
However, when the parser is integrated into the lattice processing version of JANUS, the entire list
of parse results is passed on to a post-parsing procedure.

The post-parsing procedure selects the top � packed parses from the list of parses ( � is an
adjustable constant). These parses will correspond to different paths through the lattice. Each
parse is is first unpacked and disambiguated. Next, the path of lattice words associated with each
of the parses is retrieved and the acoustic score of this path is calculated and attached to the parse.
The acoustic score is of each parse is then combined with the parser score 1 into a joint score, and
the parse list is re-ranked according to the joint scores.

After each of the individual sub-lattices are parsed and the list of parse results for each sub-lattice
is rescored according to both the parser and acoustic scores, the parse results for the sub-lattices
are combined together into a list of parse results for the entire utterance. Finally, the best scoring
utterance parse is selected and passed on to the generation module.

We have recently also integrated the discourse processor into this version of the system. When
discourse processing is performed, the list of possible utterance parses is passed on to the discourse
processor. The discourse processor rates each of the possible parses with yet another score, which
is combined with the parse score and the acoustic score. The list of parse results is then re-ranked
according to the combination of all three scores.

1We are still experimenting with the weights assigned to each of the scores in this combination. In the experiments
reported here the weight assigned to the parse score was three times that of the acoustic score.

136



okay {comma}
we’re gonna need to meet again {comma} the next two weeks {seos}
on {comma} Thursday {comma} April first {comma}
I {comma} can meet after eleven o’clock {period}
if that’s alright with you {period} {seos}

Figure 7.4 Transcribed Text of the Example Utterance

Speech Top-best Lattice
Input Hypothesis: Input Hypothesis:
OKAY ARE ANY TO MEET AGAIN OKAY I COULD NEED TO MEET AGAIN
THE NEXT TWO WEEKS THE NEXT TWO WEEKS
ON THURSDAY APRIL FIRST I EIGHTH CAN ON THURSDAY APRIL FIRST I CAN MEET
MEET AFTER ELEVEN O+CLOCK AFTER ELEVEN O+CLOCK
IF THAT+S ALRIGHT WITH YOU IF THAT+S ALRIGHT WITH YOU
Parsed Clauses: Parsed Clauses:

(I NEED TO MEET AGAIN
THE NEXT TWO WEEKS)

(ON THURSDAY APRIL FIRST) (ON THURSDAY APRIL FIRST I CAN MEET
(I EIGHTH) AFTER ELEVEN O+CLOCK)

(IF THAT+S ALRIGHT WITH YOU)
Translated Output: Translated Output:
“THURSDAY APRIL THE FIRST” “I HAVE TO MEET IN THE NEXT TWO
“I THE EIGHTH” WEEKS AGAIN”

“ON THURSDAY APRIL THE FIRST I CAN
MEET AFTER ELEVEN O+CLOCK”
“IF THAT IS GOOD FOR YOU”

Figure 7.5 Example: Parsing Top-best Speech Hypothesis vs. Lattice

7.5. An Example

To demonstrate how using the lattice parser can improve both the accuracy of the selected speech
hypothesis, as well as the quality of the end-to-end translation result, we present an example that
was taken from a recent evaluation of the lattice parsing version of the system (see the next section
for the complete results of this evaluation). This example was taken from an English-to-English
translation evaluation.

Figure 7.4 shows the transcribed text of the example utterance. In Figure 7.5, the results from
parsing the top-best hypothesis of the speech recognizer are compared with the corresponding
results from the lattice parser. The top-best speech hypothesis is contrasted with the hypothesis
(lattice path) of the parse chosen by the lattice parser. At the top of the figure, the input hypothesis
can be seen. When compared with the transcribed text of the utterance, one can see that the top-
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best speech hypothesis contains two misrecognized substitutions (“are”, “any”), one deletion
(“need”) and one insertion (“eight”), which corresponds to a word accuracy of 85% for the
utterance. The lattice hypothesis that was chosen as best by the parser has only two substitutions
(“I”, “could”), which corresponds to a word accuracy of 92%.

But most importantly, the misrecognitions in the top-best speech hypothesis had a very adverse
effect on the parsability of the utterance. This resulted in a very poor parse and consequently, a
poor translation result. In the lattice case, only one of the two substituted words had to be skipped
in order to parse the utterance. This resulted in a generally correct parse, and consequently, a
correct translation.

7.6. Performance Evaluation
Table 7.1 shows the results of a preliminary evaluation we have recently conducted to evaluate the
performance of the lattice parsing approach. On a common test set of 14 unseen English dialogs (99
utterances), we compared the results of using the lattice processing version of the JANUS system
with the results of processing the top-best speech hypothesis. Results on transcribed input of the
same test set also appear in the table.

As can be seen in the table, the preliminary results show only a slight improvement in the
total percentage of acceptable translations, which increased from 41.4% for parsing the top-best
speech hypothesis, to 44.5% when parsing lattices. This compares with a performance of 83.9%
acceptable translations on the transcribed input. While the percentage of acceptable translations
improved slightly with using the lattice parser, the percentage of “perfect” translations decreased
(10.1% for lattice parsing versus 17.2% for speech top-best). This was offset by a larger increase in
the percentage of “OK” translations (34.3% for lattice parsing versus 24.2% for speech top-best).
Note that the lattice parsing evaluation does not distinguish between translations that were bad
due to a selected hypothesis with poor recognition, and other bad translations. The presumption
was that if a mostly correct hypothesis appears in the lattice, the lattice parser should hopefully be
capable of finding it.

Further analysis showed that the lattice parser succeeded to produce an acceptable translation
for 15 of the utterances that were badly translated due to poor recognition when the top-best
speech hypothesis was used. The hypothesis selected by the lattice parser for these utterances
contained fewer misrecognitions, and consequently, the utterance was parsed and translated ad-
equately. However, 12 utterances that were acceptably translated by using the top-best speech
hypothesis, were translated poorly when using the lattice parser. In most of these cases, this was
due to the fact that the lattice parser prefered a hypothesis in the lattice that produced a better
parse score than the top-best speech hypothesis, but that contained more misrecognitions. Such
problems could possibly be resolved by a better combination scheme between the acoustic score
and the parser score, and by improvements in the parse score heuristics.

Another interesting phenomena that we have noticed is that the lattice parser appears to perform
better than the speech top-best on longer utterances, while on short utterances, parsing the speech
top-best hypothesis is better. We believe this is due to the fact that while the top-best speech
hypothesis is likely to contain more misrecognized words for longer utterances, such utterances
contain far greater amounts of “linguistic constraints”, which can be captured via the relative parse
scores of the various lattice paths. On the other hand, short utterances contain little linguistic
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Transcribed Top-best Lattice
Input Speech Parser

Parsable 100.0% 100.0% 100.0%
Perfect
Translation 45.5% 17.2% 10.1%
OK
Translation 38.4% 24.2% 34.3%
Acceptable
Translation 83.9% 41.4% 44.5%
Bad
Translation 16.1% 15.2% 55.6%
Poor
Recognition - 43.4% -

Table 7.1 Performance Results of Top-best Speech vs. Lattice Parsing
on English Input (14 dialogs, 99 utterances, 07-14-95)

constraints. For example, if the lattice contains the two hypotheses “that sounds good” and
“that’s not good”, it will be difficult for the lattice parser to distinguish which of the two
hypotheses is correct, since both will result in good parse scores. In such cases, the acoustic
preference should carry greater weight. We therefore plan on investigating how to better capture
the level of confidence provided by each of our knowledge sources, and are hopeful that this will
lead to a combination scheme with improved performance.
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Chapter 8

Conclusions

8.1. Summary of Results
In this thesis, we described GLR*, a parsing system based on the GLR parsing algorithm, that
was designed to be robust to speech disfluencies and limited grammar coverage. The extensive
evaluations presented in the thesis demonstrate how GLR* substantially enhances the performance
of the JANUS system into which it has been integrated. These evaluations provide evidence as to
the suitability of the GLR* parser to parsing spontaneous spoken language.

The main results presented in the thesis are the following:

1. The unrestricted GLR* algorithm, which finds and parses all parsable subsets of a given input,
requires infeasible time and space resources. However, feasible time and space bounds are
achieved using a beam search that limits the amount of word skipping considered by the
parser. Reasonably tight beam parameters were sufficient for finding the best parsable subset
in the domains in which we have tested the parser.

2. We developed a statistical disambiguation module for the unification based versions of the
GLR and GLR* parsers. Probabilities are attached directly to the actions in the LR pars-
ing table. This disambiguation model is much more detailed than previous models such as
probabilistic context-free grammars, and can capture some level of inter-sentential context.
However, the number of parameters that need to be modeled is much larger, and the model
requires training on a large set of correctly disambiguated parses. Although obtaining such
a large training corpus is a tedious task, our experiments have shown that surprisingly good
disambiguation results can be achieved with even relatively very small amounts of training
data, when the data contains examples of the most common types of ambiguity. Our dis-
ambiguation success rate was about 66% for ambiguous sentences in the JANUS Spanish
(SSST) domain, and about 75% for the ATIS domain. In both cases the training sets managed
to observe only about 5% of all possible parsing actions.

3. We developed a general framework for combining a collection of parse evaluation measures
into an integrated heuristic for evaluating and ranking the parses produced by the GLR*
parser, and developed a tool for optimizing the weight settings of the various evaluation
measures. We developed a set of four measures for the JANUS scheduling domain and the
ATIS domain. The most dominant measure is a penalty function for skipped words. The
other three measures are a penalty function for substituted words, a fragmentation penalty,
and a statistically based penalty. The results of test evaluations showed that the combined
heuristic based on these four measures is about 90% effective in selecting the best parse from
the set of parses produced by the parser on a given input.
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4. We developed a parse quality heuristic that allows the parser to self-judge the quality of the
parse chosen as best, and to detect cases in which the best result of the parser is likely to have
skipped information that is crucial to the correct understanding of the input utterance. The
results of test evaluations of the parse quality heuristic show that it is about 85% accurate in
predicting whether or not the selected parse analysis is reasonably correct.

5. We integrated the GLR* parser into the JANUS speech translation system, resolved inte-
gration issues such as full utterance parsing, and conducted extensive evaluations of the
performance of the system using GLR*. We compared system performance using GLR*
with corresponding versions that used both the original non-robust GLR parser and the
semantic-based Phoenix parser. Our evaluation results on both transcribed and speech rec-
ognized input show that compared with GLR, GLR* produces between 15% and 30% more
parse analyses that result in acceptable translations (on ATIS the increase was more modest -
about 11%). The overall end-to-end translation performance of GLR* and Phoenix was very
similar, although Phoenix appeared to be slightly better on speech recognized input.

6. We developed a version of GLR* that is suitable to parsing word lattices produced by
the speech recognizer, and have begun investigating how parsing lattices can potentially
overcome errors of the speech recognizer and improve end-to-end performance of the speech
translation system. A preliminary test evaluation showed a very slight increase of about 3%
in the number of acceptable translations produced by the system, when the system processed
lattices instead of the top-best hypothesis from the speech recognizer.

8.2. Further Research
GLR* is now an integral part of the JANUS system, an evolving speech-to-speech translation
project. The goal of improving the end-to-end performance of the JANUS system, and the need to
address practical problems that are manifested in the actual data processed by the system, provide
the impetus for much of our current and future research on improving the parser. In this last section
of the thesis, we mention some immediate questions about how the parser can be improved within
the current system, and to what degree it is applicable to other systems and domains.

Other Applications

As the parsing component of the JANUS speech-to-speech translation system, GLR* has proven
to be highly suitable for handling spontaneously spoken language in limited domains. Evaluations
on the ATIS domain have shown similar results. However, several questions remain with respect
to the generality of the GLR* approach:

1. Is GLR* similarly effective for other spoken language applications?

2. Are the principles of the GLR* approach applicable to other types of parsers?

3. The search and parse evaluation heuristics that are an integral part of the parser are essential
for its performance. Are these heuristics suitable for other domains as well?
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4. Is GLR* useful for other practical natural language systems that do not process speech? For
example, text extraction systems require an ability to scan large amounts of text, analyze the
portions that are relevant to the topic of interest, and ignore the rest of the text. Can GLR*,
or its principle ideas, offer a new solution to this problem?

Improved Beam Search

The current beam search employed by the parser allows only a constant number of different
shift actions to be considered at each parsing stage. Although this provides some flexibility with
respect to the amount of word skipping that is considered at each stage, some problems remain.
Ambiguity tends to increase with the length of the input utterance, along with the number of parsing
options considered by the parser. Thus, significantly more shift actions can be distributed in later
stages, and since the size of the beam remains constant, this has an effect of reducing the amount
of word skipping allowed. This problem is even more severe in the lattice parsing version of
the algorithm, where even a much greater number of possibilities are considered simultaneously.
We must therefore investigate how to implement a more flexible beam mechanism, and possibly
consider pruning parsing actions according to probabilistic or other criteria.

Improved Parse Evaluation and Parse Quality Heuristics

The parse evaluation heuristic that we developed for the JANUS and ATIS grammars combines
four parse scoring measures. Our evaluations indicated that this combined heuristic was quite ef-
fective in selecting the best parse among possible parses of different subsets of the input utterance.
Nevertheless, adding additional scoring measures should potentially further improve the heuristic.
We are currently investigating how the discourse processor can apply a variety of discourse con-
straints, and how the compliance with these constraints can be expressed in the form of penalty
scores. We are also looking into the issue of how the discourse scores can be combined with the
parser’s other scoring measures in the best possible way, and are investigating schemes that are
more flexible than linear combination.

The parse quality heuristic that determines the confidence of the parser in the quality of the best
parse found can also be improved. Deeper semantic and pragmatic analysis should allow us to better
judge whether the information that was skipped was crucial to the understanding of the utterance.
Furthermore, we would like to try and expand this heuristic into a confidence heuristic for the full
end-to-end speech translation system. In such a case, the heuristic would have to capture measures
of confidence from the various components of the system, most notably the speech recognizer, the
parser and the discourse processor.

Combining GLR* and Phoenix

Because the architectures of the GLR* parser and the Phoenix parser are very different, they each
perform well for differentkinds of utterances. We would like to further investigate these differences,
in order to hopefully develop a strategy for combining the two parsers in an advantageous way.
One direction that we are investigating is using Phoenix as a back-up parser. In this configuration,
the input is first parsed by GLR*, but if all resulting parses are considered bad by the parse quality
heuristic, the input is reparsed by the Phoenix parser. We are in the process of investigating whether
this combination method can improve end-to-end translation results.
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Statistical Disambiguation

Statistical disambiguation is currently performed as a post process to parsing. As explained in
section 4.5.1, due to the non local effects of feature structure unification, it is difficult to use
probabilistic information at parse time in order to prune out sub-parses with low probabilities.
Nevertheless, this is an attractive direction that we would like to explore further, since an improved
search heuristic that includes such pruning can substantially improve parser efficiency without the
cost of reduced accuracy. This is especially important for the lattice parsing version of GLR*,
where the parser must consider an extremely large number of possibilities.

Another problem is the amount of training data available for calculating the statistics used
for disambiguation. For both the JANUS and ATIS grammars, the size of the training set was
inadequately small. Extending the training corpus of sentences and their correct feature structures
with large amounts of additional data is likely to significantly improve disambiguation. However,
is it possible to do this with far less manual effort, or even automatically? Currently, this is still a
rather labor intensive task, since the correct feature structure must either be hand-coded (as a target
ILT), or selected from a set of ambiguities using our interactive disambiguation procedure. One
possibility worth exploring is to use manually graded data from our frequent end-to-end evaluations
to automatically determine “correct” feature structures. If “perfect” translations can indicate with
very high confidence that the ILT feature structure of the selected parse was completely correct, then
sentences that were “perfectly” translated can subsequently be automatically added to the statistical
training corpus, along with their chosen feature structure. This idea remains to be investigated.

The probabilistic model that we currently use for statistical disambiguation does not take
into account which words of the utterance were skipped by the parser. Thus, word skipping
is not modeled probabilistically, and is handled by a separate penalty scheme. We would like to
investigate whether the probability of skipping a word can be captured by an improved probabilistic
model, and whether this can improve both statistical disambiguation and parse selection.

Lattice Parsing

The preliminary results on parsing lattices did not show a significant improvement in end-to-end
translation accuracy, compared to results from parsing the top-best speech recognizer. This was
partly due to the fact that the lattices had to be severely pruned, and that in some cases, the most
accurate hypothesis in the lattice was pruned out, while the hypotheses that remained in the lattice
were not significantly better than the top-best one. If the efficiency of the lattice parser can be
significantly improved, less pruning will be required in advance, since we will be able to parse
larger lattices. This is likely to improve our performance on lattice parsing.

Better schemes for combining the parse score, acoustic score and possibly other measures (such
as discourse constraints) must also be investigated. As mentioned, we noticed that the lattice parser
appears to perform better than the speech top-best on longer utterances, while on short utterances,
parsing the speech top-best hypothesis is better. We believe this is due to the fact that longer
utterances contain far greater amounts of “linguistic constraints”, which are reflected via the parse
scores. We therefore plan on investigating how to better capture the level of confidence provided
by each of our knowledge sources, and are hopeful that this will lead to a combination scheme with
improved performance.
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Appendix A

Lisp Code of the GLR* Parsing
Algorithm

This Appendix contains a detailed description of the GLR* parsing algorithm, presented in the
form of a package of data-structures and functions written in Common Lisp. This package of
lisp code is a simplified version of the actual implementation of GLR* within the unification-
based Generalized LR Parser/Compiler software package [96]. In particular, all unification related
operations have been deleted. Thus, the code presented here describes only the context-free aspects
of the basic GLR* parsing algorithm (including the search heuristics). The full Lucid Common
Lisp implementation package of GLR* and the unification-based Generalized LR Parser/Compiler
is available for academic research from the Center for Machine Translation at Carnegie Mellon
University, subject to a licensing agreement. Interested parties should contact the author.

A.1. Global Variables
;;;*************************************************************************
;;; Parser Global Variable Settings
;;;*************************************************************************

(defparameter *accept* ’A) ; ’a
(defparameter *shift* ’S) ; ’s
(defparameter *wild-card-shift* ’SH*)
(defparameter *reduce* ’R) ; ’r
(defparameter *wild-card-character* ’%)
(defvar *no-ambiguity-packing* nil) ; If you do not want to pack

; ambiguities, set this t.

;; parsing tables variables

(defvar *grammar-table*) ; array of grammar rules
(defvar *action-table*) ; array of action tables
(defvar *goto-table*) ; array of goto tables
(defvar *reduce-union-table*) ; for recovery from failure

(defvar *GG*) ; rules, action table and goto table are bound
(defvar *A-TAB*) ; to these variables when the grammar is
(defvar *G-TAB*) ; loaded.

(defvar *start-symbol*) ; rhs of the first rule.
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;; Graph Structured Stack variables

(defvar *state-array*) ; array for state vertex
(defvar *symbol-array*) ; array for symbol vertex
(defvar *node-array*) ; array for node

(defparameter *initial-vertex-size* 1000)
(defparameter *initial-node-size* 1000)
(defparameter *initial-state* 0 "initial state number")

;;; Additional global variables for GLR*

(defvar *input-list*) ; assoc list of input words keyed by positions
(defvar *parsed-sent*) ; list of sentence words actually parsed
(defvar *skipped-words*) ; list of words that were skipped
(defvar *subst-words*) ; list of words that were substituted
(defvar *skip-word-limit* nil) ; AL - this limits the maximum number of words

; in a row allowed to be skipped
; nil means unlimited
; 1 means NO SKIPPING
; and it may be set to any integer k

(defvar *beam-limit* 5) ; AL - this limits the maximum number of top
; nodes to be pursued
; nil means unlimited
; and it may be set to any integer k

(defvar *saved-active-array*) ; array of previous active nodes - AL
(defvar *speech-subst-list* nil) ; AL - this assoc list contains typical

; substitutions of the speech recognizer
; should be loaded separately for each task

(defvar *disambig-flag* nil) ; AL - turn this flag on for statistical
; disambiguation. nil means no disambiguation

(defvar *last-lhs* nil) ; AL - keeps track of last reduced constituent

A.2. Data Structures
;;;*************************************************************************
;;; Parser Structure Definitions
;;;*************************************************************************

; **** structure for active-list

(defstruct active-vertex
vertex-number ; state node pointer
level ; word end position of last word shifted - AL
state ; state number
action ; list of actions e.g. ((re . 3)(sh . 5))
)
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; **** structure for state-vertex

(defstruct (state-vertex (:conc-name nil))
state ; state number e.g. 4
level ; word-position of last word shifted - AL
par-symbol ; e.g. (3 5)
)

; **** structure for symbol-vertex

(defstruct (symbol-vertex (:conc-name nil))
category ; e.g. NP
node-ptr ; e.g. 3
par-state ; e.g. (3 5)
start-position ; e.g. 13 start word position of the left most symbol

; add 5/26/87 to pack every packable ambiguity
skip ; list skipped words in the phrase - AL
subst-list ; list of substituted words in the phrase - AL
)

;;;*************************************************************************
;;; Initialization and structure modification functions
;;;*************************************************************************

;;; init-array initializes the arrays of the three main structure types

(defun init-array ()
(setq *state-array* (make-array *initial-vertex-size*

:adjustable t
:fill-pointer t))

(setf (fill-pointer *state-array*) 0)
(setq *symbol-array* (make-array *initial-vertex-size*

:adjustable t
:fill-pointer t))

(setf (fill-pointer *symbol-array*) 0)
)

; state-array
(defun state-array (n)

(aref *state-array* n))

; symbol-array
(defun symbol-array (n)

(aref *symbol-array* n))

;;; push-state adds a new state vertex to the state array

(defun push-state (state-number level par-symbol)
(let ((a-vertex (make-state-vertex :state state-number

:level level ; AL
:par-symbol par-symbol)))

(vector-push-extend a-vertex *state-array*) ; return value
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))

;;; push-symbol adds a new symbol vertex to the symbol array

(defun push-symbol (category node-ptr par-state-list start-position
skip-list subst-list)

(let ((a-symbol (make-symbol-vertex :category category
:node-ptr node-ptr :par-state par-state-list
:start-position start-position
:skip skip-list ; AL
:subst-list subst-list))) ; AL

(vector-push-extend a-symbol *symbol-array*) ; return value
))

;;; push-node adds a parse node to the node array

(defun push-node (category sons value)
(let ((a-node (make-node :node-category category

:sons sons :value value))
node-no)

(setq node-no (vector-push-extend a-node *node-array*))
node-no

))

;;; push-symbol-node: push a symbol and a node

(defun push-symbol-node (category par-state sons value word-position
skip-list subst-list)

(push-symbol category (push-node category sons value)
par-state word-position skip-list subst-list)) ; AL

;;; add-par-state adds a parent state to list of parent states of a symbol

(defun add-par-state (parent symbol)
(setf (par-state (aref *symbol-array* symbol))

(append (par-state (aref *symbol-array* symbol))
(list parent))))

;;; add-par-symbol adds a parent symbol to list of parent symbols of a state

(defun add-par-symbol (parent state)
(setf (par-symbol (aref *state-array* state))

(append (par-symbol (aref *state-array* state))
(list parent))))

;;; delete-par-symbol deletes a parent symbol from the list in a state vertex

(defun delete-par-symbol (a-parent state)
(setf (par-symbol (aref *state-array* state))

(remove a-parent (par-symbol (state-array state)))
))

147



A.3. Main Parsing Functions
;;;***************************************************************************
;;; main parser lisp code
;;;***************************************************************************

;;; parse-list is the main GLR* parsing function for word lists (input strings)

(defun parse-list (text)
(setq *parser-failed* nil)
(setq *input-list* nil)
(setq *parsed-sent* nil)
(setq *skipped-words* nil)
(setq *subst-words* nil)
(setq *saved-active-array*

(make-array (length text) :initial-element nil))
(do ((active-list (initialize))

(active-level)
(rest-of-text text (cdr rest-of-text))
(lookahead)
(parsed-part nil) ; display when failed
(shift-active-list nil)
(start-time (get-internal-real-time))
(time-spent)
(word-position 1 (1+ word-position))
(active-before-reduce) ; active at the beginning of the session

)
((null rest-of-text) nil) ; return
(setq lookahead (car rest-of-text))
(push (list word-position lookahead) *input-list* )

; AL - check for noise word, if noise don’t parse

(when (not (is-noise lookahead))

; AL - append current list of active nodes to the saved-active-array

(setq active-level (active-vertex-level (car active-list)))
(setf (aref *saved-active-array* active-level)

(append (copy-active-list active-list)
(aref *saved-active-array* active-level)))

(setq active-list
(fill-actions active-list lookahead)) ; of active list

(cond ((and (not *ignore-space*)
(punctuation-p lookahead))

(when (eq *space-character* lookahead)
(setq rest-of-text (cdr rest-of-text))
(setq lookahead (car rest-of-text)))

(setq active-list (reduce-all active-list lookahead)))
(*ignore-space*

(setq active-list (reduce-all active-list lookahead)))
(t (setq active-list (remove-action active-list *reduce*))))
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; AL - merge states on *saved-active-array* and then fill in shift actions

(setf (aref *saved-active-array* active-level)
(merge-state (aref *saved-active-array* active-level)))

(multiple-value-setq (active-list shift-active-list)
(fill-shift-actions lookahead))

; AL - failure occurs only at the end of the sentence

(when (and (eq lookahead ’$)
(null active-list))

(setq *parser-failed* t)
(setq lookahead (car rest-of-text)))

; AL - Exit at end-of-string: list of found parses is in active-list

(when (eq lookahead ’$)
(return-from parse-list ;; ****** exit

(disp-parses active-list time-spent)))

; AL - do all the shifts

(setq active-list (shift-all shift-active-list word-position))

; AL - merge top states again

(setq active-list (merge-state active-list))

(setq parsed-part (cons lookahead parsed-part)))))

;;; initialize starts the structure arrays at run time

(defun initialize ()
(setf (fill-pointer *state-array*) 0)
(setf (fill-pointer *symbol-array*) 0)
(setf (fill-pointer *node-array*) 0)
(list (make-active-vertex

:vertex-number (push-state *initial-state* 0 nil) ; AL
:level 0 ; AL
:state *initial-state*
:action nil)))

;;; fill-actions fills the parser actions defined for an active node

(defun fill-actions (active-list lookahead)
(let (action (return-active active-list))

(dolist (an-active active-list return-active)
(setq action (get-action (active-vertex-state an-active) lookahead))
(cond ((null action)

(setq return-active
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(remove-from an-active return-active))
(t (setf (active-vertex-action an-active) action)))))))

;;; AL - fill-shift-actions fills actions and then prunes to leave only shifts
;;; also prunes according to the setting of *skip-word-limit* and
;;; *beam-limit*

(defun fill-shift-actions (lookahead)
(let ((filled-active nil)

(filled-active-list nil)
(shift-action-list nil)
(active-list nil)
(return-active nil)
(start-return-active nil)
(shift-return-active nil)
(substitution-list nil)
(top-level (caar *input-list*))
(first-level (- (caar *input-list*) 1))
(cur-level nil)
(node-level nil))

(setq substitution-list
(cons lookahead (second (assoc lookahead *speech-subst-list*))))

;;; first distribute shifts to the initial state to allow parse to start here

(setq active-list (copy-active-list (aref *saved-active-array* 0)))

(when (not (null *beam-limit*))
(dolist (an-active active-list nil)

(dolist (a-look substitution-list filled-active-list)
(setq filled-active

(car (fill-actions (list an-active) a-look)))
(when filled-active

(setq shift-action-list
(shift-prune (active-vertex-action filled-active)))
(when shift-action-list

(setf (active-vertex-action filled-active)
shift-action-list)

(setq start-return-active
(cons (list filled-active a-look)

start-return-active)))))))

;;; outer loop is on the distance from the top level

(do ((distance 0 (+ distance 1)))
((> distance first-level)

(setq shift-return-active
(append shift-return-active start-return-active))

(values (mapcar #’car shift-return-active)
shift-return-active))

(setq active-list nil)
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(setq cur-level (- first-level distance))

(when (or (> cur-level 0)
(null *beam-limit*))

(setq active-list
(copy-active-list (aref *saved-active-array* cur-level))))

(dolist (an-active active-list nil)
(setq filled-active-list nil)
(dolist (a-look substitution-list filled-active-list)

(setq filled-active
(car (fill-actions (list (copy-one an-active)) a-look)))

(when (not (null filled-active))
(setq filled-active-list

(append filled-active-list
(list (list filled-active a-look))))))

(dolist (filled-active filled-active-list nil)
(setq node-level

(level (state-array
(active-vertex-vertex-number an-active))))

(setq shift-action-list
(shift-prune (active-vertex-action (first filled-active))))

(when (null shift-return-active)
(setq first-level node-level))

(cond ((null shift-action-list)
(setq *active-killed*

(cons filled-active *active-killed*)))
((and (not (null *skip-word-limit*))

(< node-level (- top-level *skip-word-limit*)))
(setq *active-killed*

(cons filled-active *active-killed*))
(setq shift-return-active

(append shift-return-active start-return-active))
(return-from fill-shift-actions

(values (mapcar #’car shift-return-active)
shift-return-active)))

((and (not (null *beam-limit*))
(< node-level first-level)
(> (length return-active) *beam-limit*))

(setq *active-killed*
(cons filled-active *active-killed*))

(setq shift-return-active
(append shift-return-active start-return-active))

(return-from fill-shift-actions
(values (mapcar #’car shift-return-active)

shift-return-active)))
(t (setf (active-vertex-action (first filled-active))

shift-action-list)
(setq return-active

(cons (first filled-active) return-active))
(setq shift-return-active

(cons filled-active shift-return-active)))))))
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(values (mapcar #’car shift-return-active) shift-return-active)))

;;; AL - shift-prune prunes a list of actions and leaves only shifts

(defun shift-prune (action-list)
(let ((return-actions nil))

(dolist (an-action action-list return-actions)
(when (not (eq *reduce* (first an-action)))

(setq return-actions (cons an-action return-actions))))))

;;; pickup-reduce pick up a reduce action from the active vertex list
;;; and also returns the rest of the active list.
;;; e.g. ((1 5 ((sh . 4) (re . 3))) (2 10 (re . 4)))
;;; --> (1 5 (re . 3)) and ((1 5 ((sh . 4))) (2 10 (re . 4)))

(defun pickup-reduce (active-list)
; first find the "right most reduce"
(let (the-reduce the-active (max-word-position 0)

new-actions return-active copy)
(do ((rest-active active-list (cdr rest-active))

(an-active))
((null rest-active) nil)

(setq an-active (car rest-active))
(do ((rest (active-vertex-action an-active) (cdr rest))

(an-action) (word-position) (rule))
((null rest) nil)

(setq an-action (car rest))
(when (eq *reduce* (first an-action)) ; a reduce found

(setq rule (get-rule (cdr an-action)))
(setq word-position

(get-right-most (active-vertex-vertex-number an-active)
(second rule))) ; AL

(when (or (> word-position max-word-position)
(and (= word-position max-word-position)

(equal (first rule) *last-lhs*)))
(setq max-word-position word-position)
(setq the-reduce an-action)
(setq the-active an-active)))))

(cond ((= max-word-position 0) (values nil active-list))
(t (setq new-actions

(remove-from the-reduce
(active-vertex-action the-active)))

(cond ((null new-actions)
(setq return-active

(remove-from the-active active-list)))
(t (setf (active-vertex-action the-active) new-actions)

(setq return-active active-list)))
(setq copy (copy-active-vertex the-active))
(setf (active-vertex-action copy) (list the-reduce))
(values copy return-active)))))
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;;; get-right-most
;;; AL - rewritten to correctly go all the way back to first constituent
;;; and find its start position

(defun get-right-most (vertex-number rule-right)
(do ((rest (par-symbol (state-array vertex-number)) (cdr rest))

(a-symbol)
(new-start)
(start-pos 0))
((null rest) start-pos)

(setq a-symbol (car rest))
(setq new-start (get-right-symbol a-symbol rule-right))
(if (> new-start start-pos)

(setq start-pos new-start))))

;;; get-right-symbol
;;; AL- returns start position if first symbol in right-rule, else goes back
;;; further to parent state

(defun get-right-symbol (symbol-number rest-right-rule)
(if (= (length rest-right-rule) 1)

(first (start-position (symbol-array symbol-number)))
(do ((rest (par-state (symbol-array symbol-number)) (cdr rest)) ; else

(a-state)
(new-start)
(start-pos 0))
((null rest) start-pos)
(setq a-state (car rest))
(setq new-start (get-right-most a-state (cdr rest-right-rule)))
(if (> new-start start-pos)

(setq start-pos new-start)))))

;;; merge-state
;;; Merge right-most states that have the same state numbers.
;;; Returns the new (merged) active list.
;;; The merged one will be removed from he active list.
;;; The variable pairs is an assoc list of (state-number vertex-number) pair.
;;; called after all the reduce actions are completed and after shifts.

(defun merge-state (active-list)
(do ((rest active-list (cdr rest))

(an-active) (return-active nil)
(cur-state)
(cur-vertex-no)
(pairs nil) ; assoc list of (state vertex-numbers)
(the-pair))
((null rest) (reverse return-active)) ; *** return
(setq an-active (car rest))
(setq cur-state (active-vertex-state an-active)) ; AL
(setq cur-vertex-no (active-vertex-vertex-number an-active))
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(cond ((setq the-pair (assoc cur-state pairs))

; if the active-vertex has the same state number as the-pair
(do ((prev-vertexes (cadr the-pair) (cdr prev-vertexes))

(a-prev))
((null prev-vertexes)
(setq pairs

(cons (list cur-state
(cons cur-vertex-no (cadr the-pair)))

pairs))
(setq return-active (cons an-active return-active)))
(setq a-prev (car prev-vertexes))
(when (= (level (state-array cur-vertex-no))

(level (state-array a-prev)))
(remove-from an-active active-list)

; for each parent symbol of the state vertex to be deleted,
; add it to the parent symbol list of the-pair vertex.

(do ((rest-sym (par-symbol (state-array cur-vertex-no))
(cdr rest-sym)))

((null rest-sym) nil)
(add-par-symbol (car rest-sym) a-prev))

(return a-prev))))

(t (setq pairs ; else add it to the assoc list
(cons (list cur-state (list cur-vertex-no)) pairs))

(setq return-active (cons an-active return-active))))))

; reduce-all
; inp e.g. ( (1 5 (sh . 4)) (1 5 (re . 3)) (2 10 (sh . 3))) (structures)
; return all shift active list

(defun reduce-all (active-list lookahead)
(when (null active-list)

(return-from reduce-all nil))
(let ((return-active active-list))

(do ((a-reduce t) ; exit when this is nil.
(new-active-list))
((null a-reduce) return-active) ; returns all shift active list
(multiple-value-setq

(a-reduce new-active-list)
(pickup-reduce return-active))

(when a-reduce
(setq return-active

(reduce-one a-reduce new-active-list lookahead))))))

;;; reduce: reduce one active vertex and returns newly-born vertex(es)

(defun reduce-one (a-reduce active-list lookahead)
(let ((rule (get-rule (cdr (first (active-vertex-action a-reduce)))))
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return-val)
(setq return-val

(backmove-to-symbol
(active-vertex-vertex-number a-reduce)
active-list (first rule) (second rule) (third rule)
nil lookahead nil nil nil)) ; AL

return-val))

;;; backmove-to-symbol: return newly born actives during the session.

(defun backmove-to-symbol (state active-list rule-left rest-rule-right
func sons lookahead word-position-list
symbol-skip-list symbol-subst-list) ; AL

(do ((rest-par (par-symbol (state-array state)) (cdr rest-par))
(return-actives active-list)
(a-parent)
(last-end)
(last-start)
(new-skip-list))
((null rest-par) return-actives)

(setq a-parent (car rest-par))

; AL - last-end is the word position in which the parent symbol ends
(setq last-end (cadr (start-position (symbol-array a-parent))))

; AL - last-start is the word position in which the previous symbol started
(if (null word-position-list)

(setq last-start (+ last-end 1))
(setq last-start (caar word-position-list))) ; else

(setq new-skip-list
(reverse (do ((pos (+ last-end 1) (+ pos 1))

(skip-list nil)
(skiped-word))
((= pos last-start) skip-list)
(setq skiped-word (reverse (assoc pos *input-list*)))
(setq skip-list (cons skiped-word skip-list)))))

(setq new-skip-list (append new-skip-list symbol-skip-list))

(setq return-actives
(backmove-to-state a-parent return-actives rule-left rest-rule-right

func sons lookahead
(cons (start-position (symbol-array a-parent)) word-position-list)
(append (skip (symbol-array a-parent)) new-skip-list)
(append (subst-list (symbol-array a-parent)) symbol-subst-list)))))

;;; backmove-to-state

(defun backmove-to-state (symbol active-list rule-left rest-rule-right func
brothers lookahead word-position-list
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symbol-skip-list symbol-subst-list) ; AL
(cond ((null (cdr rest-rule-right))

(apply-rule symbol active-list rule-left func
(cons (node-ptr (symbol-array symbol)) brothers) lookahead
word-position-list symbol-skip-list symbol-subst-list))

(t
(do ((rest-par (par-state (symbol-array symbol)) (cdr rest-par))

(return-actives active-list)
(a-parent))
((null rest-par) return-actives)
(setq a-parent (car rest-par))
(setq return-actives

(backmove-to-symbol a-parent return-actives rule-left
(cdr rest-rule-right) func
(cons (node-ptr (symbol-array symbol)) brothers)
lookahead word-position-list
symbol-skip-list symbol-subst-list))))))

;;; apply-rule

(defun apply-rule (symbol active-list rule-left func sons lookahead
word-position-list symbol-skip-list symbol-subst-list) ; AL

(let (value new-node)
(cond ((null func) (setq value nil))

(t (setq value (get-value func sons))
(when (null value)

(return-from apply-rule active-list)))) ; killed
(setq new-node (push-node rule-left (list sons) value))
(do ((rest-par (par-state (symbol-array symbol)) (cdr rest-par))

(a-parent) (new-state-no) (adding-actives nil) (merge-to)
(new-symbol) (new-active) (active-level) (prev-symbol))
((null rest-par) (append active-list adding-actives)) ; return

(setq a-parent (car rest-par))
(setq new-state-no

(get-goto-state (state (state-array a-parent)) rule-left))

(cond ((setq merge-to (same-destination new-state-no adding-actives))
(setq prev-symbol

(car (par-symbol (state-array merge-to))))
(add-par-state a-parent prev-symbol))

(t (setq new-symbol
(push-symbol rule-left new-node (list a-parent)

(list (caar word-position-list)
(second (car (last word-position-list))))

symbol-skip-list symbol-subst-list))

(setq *last-lhs* rule-left)

(unless (ambiguity-packing new-symbol active-list
new-state-no lookahead)

(setq new-active
(make-active-vertex
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:vertex-number (push-state new-state-no
(cadar (last word-position-list))
(list new-symbol))

:level (cadar (last word-position-list))
:state new-state-no
:action nil))

; AL - add the new active node to the saved-active-list

(setq active-level (active-vertex-level new-active))
(setf (aref *saved-active-array* active-level)

(cons (copy-one new-active)
(aref *saved-active-array* active-level)))

(setq adding-actives
(append

adding-actives
(fill-actions (list new-active) lookahead)))))))))

;;; ambiguity-packing
;;; 1. see if the new-symbol is packable to another symbol
;;; (the same destination, the same origin and the same category)
;;; 2. merge them into the node
;;; return node to which it merged if packed; return nil otherwise.
;;; 8/5/87 add no-duplicate son check for failure recovery
;;;
;;; AL - logic is refined for handling ambiguities due to skipped words
;;; When a local ambiguity has been detected, skipped word information of the
;;; two symbols is compared :
;;; case 1 : both have same skipped words ---> pack (a real ambiguity !)
;;; case 2 : new symbol has more skipped words ---> new symbol is discarded
;;; case 3 : old symbol has more skipped words ---> old symbol is discarded
;;; and replaced by the new symbol
;;; case 4 : neither one subsumes the other : they are NOT packed together

(defun ambiguity-packing (new-symbol active-list new-state-no lookahead)
(let ((saved-active-list nil)

(active-level nil))
(if (and *no-ambiguity-packing*

(or (not (eq *skip-word-limit* 1)) ; AL
(not (eq (category (aref *symbol-array* new-symbol))

*start-symbol*))))
(return-from ambiguity-packing nil))

(setq active-level (second (start-position (symbol-array new-symbol))))
(setq saved-active-list (aref *saved-active-array* active-level))

(do ((rest saved-active-list (cdr rest)) ; check for each active
(an-active)
(left-state0 (car (par-state (symbol-array new-symbol))))
; origin state of the adding symbol. must be only 1 element list.
(new-node (node-ptr (symbol-array new-symbol)))
(right-state))
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((null rest) nil)
(setq an-active (car rest))
(setq right-state

(same-destination new-state-no (list an-active)))
(when (and right-state

(active-match-p an-active active-list lookahead))
(do ((rest-par-sym (par-symbol (state-array right-state))

(cdr rest-par-sym))
(a-par-symbol))
((null rest-par-sym) nil)

(setq a-par-symbol (car rest-par-sym))
(when (equal (category (symbol-array a-par-symbol))

(category (symbol-array new-symbol)))

; found a symbol with the same category
; So check whether it has the same origin.

(do ((rest-par (par-state (symbol-array a-par-symbol))
(cdr rest-par))

(a-left-state))
((null rest-par) nil)

(setq a-left-state (car rest-par))
(when (equal left-state0 a-left-state)

; origin is also the same

; AL - pack only if symbols have same substitution lists

(when (equal (subst-list (symbol-array new-symbol))
(subst-list (symbol-array a-par-symbol)))

; AL - logic for skipped words in symbols :

; case 1 : equal skip lists

(cond ((and (equal (skip (symbol-array new-symbol))
(skip (symbol-array a-par-symbol)))

(equal (start-position (symbol-array new-symbol))
(start-position (symbol-array a-par-symbol))))

(append-new-ambiguity a-par-symbol new-symbol)
(delete-par-symbol new-symbol right-state)
(return-from ambiguity-packing a-par-symbol))

; case 2 : new skip list is bigger

((and (is-subset (skip (symbol-array a-par-symbol))
(skip (symbol-array new-symbol)))

(pos-covers (start-position (symbol-array a-par-symbol))
(start-position (symbol-array new-symbol))))

(return-from ambiguity-packing t))

; case 3 : old skip list is bigger

((and (is-subset (skip (symbol-array new-symbol))
(skip (symbol-array a-par-symbol)))

(pos-covers (start-position (symbol-array new-symbol))
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(start-position (symbol-array a-par-symbol))))

; replace old symbol with new-symbol only if new-node hasn’t been already
; packed. Otherwise, both will remain at this stage.

(when (not (listp (node-category (node-array new-node))))
(delete-par-symbol a-par-symbol right-state)
(add-par-symbol new-symbol right-state)
(return-from ambiguity-packing t)))

; case 4 : skip lists do not subsume one another

(t nil)))))))))))

; same-destination
; see if the same state number appears in the active list.
; return the state-vertex-number or nil

(defun same-destination (state-no active-list)
(do ((rest active-list (cdr rest))

(an-active))
((null rest) nil)
(setq an-active (car rest))
(when (= state-no (active-vertex-state an-active))

(return (active-vertex-vertex-number an-active)))))

;;; shift-all
;;; ( (1 5 (sh . 4)) (1 5 (sh . 3)) (2 10 (sh . 3))) --> ((3 7 nil)(5 12 nil))

(defun shift-all (shift-active-list word-position)
(do ((rest shift-active-list (cdr rest))

(new-active-list nil)
(right-states nil) ; assoc ((state-number vertex-number))
(a-pair)
(an-active)
(a-look))
((null rest) new-active-list) ; return

(setq a-pair (car rest))
(setq an-active (first a-pair))
(setq a-look (second a-pair))

; the following is to accept shift-shift conflict
(do ((shifts-left (active-vertex-action an-active) (cdr shifts-left))

(right-state-number)
(same-state))
((null shifts-left) nil)
(setq right-state-number (cdr (car shifts-left)))

(cond ((setq same-state
(second (assoc a-look ; AL

(second (assoc right-state-number right-states)))))
(add-par-state (active-vertex-vertex-number an-active)
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(first (par-symbol (state-array same-state)))))

(t ; else
(multiple-value-bind (new-active pair)

(simple-shift (active-vertex-vertex-number an-active)
a-look right-state-number word-position
(first (car shifts-left)))

(setq pair ; AL
(list (car pair)

(cons (second pair)
(second (assoc (car pair) right-states)))))

(push pair right-states)
(push new-active new-active-list)))))))

; simple-shift shift a symbol and a state.
; returns a new active vertex and (state-no vertex) assoc list
; add kind to distinguish sh (*shift*) and sh* (*wild-card-shift*)

(defun simple-shift (left-vertex lookahead right-state-number word-position
kind)

(let ((new-symbol nil)
(right-vertex nil)
(node-value nil)
(orig-word nil)
(cur-level (caar *input-list*)))

(if (equal kind *wild-card-shift*)
(setq node-value (list (list ’value lookahead)))
(setq node-value nil))

(setq orig-word (assoc word-position *input-list*)) ; AL
(if (equal (second orig-word) lookahead)

(setq orig-word nil)
(setq orig-word

(list (list word-position
(list (second orig-word) lookahead)))))

(setq new-symbol
(push-symbol-node lookahead (list left-vertex) nil node-value

(list word-position word-position)
nil orig-word)) ; AL

(setq right-vertex
(push-state right-state-number word-position (list new-symbol)))

(values (make-active-vertex
:vertex-number right-vertex
:level cur-level
:state right-state-number
:action nil) ;to be filled later

(list right-state-number (list lookahead right-vertex))))) ; AL
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A.4. Utility Functions

; AL - functions for copying an active vertex list
; copy-active-list copies all active vertexes

(defun copy-active-list (active-list)
(mapcar #’(lambda (x) (copy-one x)) active-list))

; copy-one does the actual copying of an active-vertex

(defun copy-one (an-active)
(let (new-active)

(setq new-active (copy-active-vertex an-active))
(setf (active-vertex-action new-active) nil)
new-active))

; AL - skip word functions added
; on-list checks if a skip list is on a list of lists

(defun on-list (skip1 skip-list)
(cond

((null skip-list) nil)
((equal skip1 (car skip-list)) skip1)
(t (on-list skip1 (cdr skip-list)))))

; is-subset checks if list1 is a subset of list2
; needed because subsetp only works on simple lists

(defun is-subset (list1 list2)
(cond ((null list2) nil) ;; *AL* correct bug 01/31/94

((null list1) t)
((on-list (car list1) list2) (is-subset (cdr list1) list2))
(t nil)))

; pos-covers checks if pos-sym1 covers pos-sym2
; pos-sym1 covers pos-sym2 if it covers at least the same span of words

(defun pos-covers (pos-sym1 pos-sym2)
(cond ((and (<= (car pos-sym1) (car pos-sym2))

(>= (second pos-sym1) (second pos-sym2))) t)
(t nil)))

; is-maximal-parse checks if the current parse is a maximal one

(defun is-maximal-parse (a-sym min-skip)
(let (sym-skip sym-span full-sym-skip)

(setq sym-skip (skip (symbol-array a-sym)))
(setq sym-span (start-position (symbol-array a-sym)))
(setq full-sym-skip (full-skip sym-skip sym-span))
(if (= (length full-sym-skip) min-skip)

(return-from is-maximal-parse t)
(return-from is-maximal-parse nil))))
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; is-noise determines if the word is a noise word

(defun is-noise (word)
(equal (char (string word) 0) #\%))

;;;**************************************************************************
;;; Post-parsing processing for display of results
;;;**************************************************************************

; disp-parses displays the final parses

(defun disp-parses (active-list time)
(let ((value-list nil)

(score-list nil)
(symbol-list nil)
(display-cnt 0)
(a-sym nil)
(sym-score nil)
(sym-span nil)
(sym-subst nil)
(sym-skip nil)
(skip-struct-list nil)
(sym-sent nil)
(sym-quality nil)
(sym-value nil)
(disp-values nil)
(big nil)
(small nil))

(setq symbol-list (get-symbol-list active-list))
(setq score-list (score-parses symbol-list))

(dolist (symbol-pair score-list value-list)

(when (= display-cnt *display-limit*)
(setq *parse-value* value-list)
(return-from disp-parses (car value-list)))

(setq a-sym (car symbol-pair))
(setq sym-score (second symbol-pair))
(setq sym-skip (skip (symbol-array a-sym)))
(setq sym-subst (subst-list (symbol-array a-sym)))
(setq sym-span (start-position (symbol-array a-sym)))

(setq sym-skip (full-skip sym-skip sym-span))
(setq sym-sent (get-parsed-sent sym-skip sym-subst))
(setq *skipped-words* sym-skip)
(setq *subst-words* sym-subst)

(setq sym-quality (qual-parse sym-score))

(setq display-cnt (+ display-cnt 1))
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(format *out* "˜2& Parse of input sentence :")
(format *out* "˜& ˜A " sym-sent)
(format *out* "˜2& Parse score is : ˜D " sym-score)
(format *out* " Parse quality is : ˜A " sym-quality)
(format *out* "˜2& Words skipped : ˜A " sym-skip)
(format *out* "˜2& Words substituted : ˜A " sym-subst)

(cond (*parser-failed*
(format *out*

"˜2& *** failed but recovered and got the following
***˜&"))

((> (length sym-value) 1)
(format *out* "˜2& ˜D (˜D) ambiguities found and"

(length sym-value) (length disp-values)))
(t

(format *out* "˜2& ˜D (˜D) ambiguity found and"
(length sym-value) (length disp-values))))

(multiple-value-setq (big small)
(floor time internal-time-units-per-second))

(format *out* " took ˜D.˜D seconds of real time" big small))

(return-from disp-parses score-list)))

; full-skip creates the full list of skipped words, including edges

(defun full-skip (skip-list span)
(let ((temp-skip nil))

(do ((i 1 (+ i 1))
(a-word))
((= i (car span)) nil)
(setq a-word (assoc i *input-list*))
(setq temp-skip

(append temp-skip (list (list (second a-word) (first a-word))))))

(setq temp-skip (append temp-skip skip-list))

(do ((i (+ 1 (second span)) (+ i 1))
(a-word))
((= i (caar *input-list*)) temp-skip)
(setq a-word (assoc i *input-list*))
(setq temp-skip

(append temp-skip
(list (list (second a-word) (first a-word))))))))

; get-parsed-sent creates the list of the sentence that was actually parsed

(defun get-parsed-sent (skip-list subst-list)
(let ((sent nil) found)

(dolist (a-word *input-list* sent)
(setq found (assoc (car a-word) subst-list))
(when (not (null found))
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(setq a-word (list (car a-word) (second (second found)))))
(setq found (on-list (reverse a-word) skip-list))
(when (null found)

(setq sent (cons (second a-word) sent))))
(setq *parsed-sent* sent)))

;; get-symbol-list retrieves the list of top "start" symbols from the
;; active-list.

(defun get-symbol-list (active-list)
(let ((symbol-list nil)

(state-vertex nil)
(par-sym-list nil))

(dolist (an-active active-list symbol-list)
(setq state-vertex (active-vertex-vertex-number an-active))
(setq par-sym-list (par-symbol (state-array state-vertex)))
(setq symbol-list (append symbol-list par-sym-list)))))

;; score-parses creates an sorted association list of symbol nodes and their
;; ranked scores. This list is then used in disp-parses to
;; display the best parse result(s)

(defun score-parses (symbol-list)
(let ((cur-sym-pos nil)

(cur-sym-skip nil)
(cur-sym-subst nil)
(full-sym-skip nil)
(best-count nil)
(parse-score nil)
(score-list nil))

; go over all parses and score them, building the assoc list

(dolist (a-sym symbol-list score-list)
(setq cur-sym-pos (start-position (symbol-array a-sym)))
(setq cur-sym-skip (skip (symbol-array a-sym)))
(setq cur-sym-subst (subst-list (symbol-array a-sym)))
(setq full-sym-skip (full-skip cur-sym-skip cur-sym-pos))
(setq best-count (get-best-count a-sym))
(setq parse-score (+ (length full-sym-skip)

(length cur-sym-subst)
best-count))

(setq score-list
(cons (list a-sym parse-score) score-list)))

(setq score-list
(sort score-list #’(lambda (x y)

(< (second x) (second y)))))))

;; qual-parse determines the quality of a parse - GOOD/BAD
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(defun qual-parse (score)
(cond

((>= score 8) ’BAD)
((and (> score 3)

(>= (/ score (- (length *input-list*) 1)) ’1/2)) ’BAD)
(t ’GOOD)))

(defun acknowledge ()
"
------------------------------------------------------------------------------
The Generalized LR Parser/Compiler Version 9.0 is the latest version of the
parsing system, that puts together GLR*, the new robust version of the parser,
with all previous parsing and generation features. The GLR parser has served
as a core component of various projects at the Center for Machine Translation
at Carnegie Mellon University. GLR*, featured in this latest version of the
system is a key component in the JANUS speech-to-speech translation project.
The parser is based on Tomita’s Generalized LR Parsing algorithm, augmented by
pseudo and full unification packages. The Generalized LR Parser/Compiler V9.0
is implemented in Common Lisp and no window graphics are used; thus the system
is transportable, in principle, to any machines that support Common Lisp.
Presently, the system runs on Sun SparcStations, HP 9000s running HP-UX 9.x,
DECstations running Mach and IBM RT PC’s.

The GLR Parser/Compiler Version 9.0 is available for non-profit and academic
research, subject to the signing of an appropriate licensing agreement.
Those who are interested in obtaining this software system should contact:

Dr. Alon Lavie
Center for Machine Translation
Carnegie-Mellon University
Pittsburgh, PA 15213, USA
(412)268-5655
lavie@cs.cmu.edu

Many members of CMU Center for Machine Translation have made contributions to
the system development. Version 9.0, featuring the GLR* robust version of the
parser was developed by Alon Lavie. The original GLR runtime parser was
implemented by Hiroyuki Musha, Masaru Tomita and Kazuhiro Toyoshima. The
compiler was implemented by Hideto Kagamida and Masaru Tomita. The pseudo
unification package and the full unification package were implemented by
Masaru Tomita and Kevin Knight, respectively. GENKIT and TRANSKIT were
developed by Masaru Tomita and Eric Nyberg. Steve Morrisson, Hideto Tomabechi,
and Hiroaki Saito have also made contributions in maintaining the system.
Some early sample English grammars were developed by Donna Gates, Lori Levin
and Masaru Tomita. A sample Japanese grammar was developed by Teruko Mitamura.
Other members who made indirect contributions in many ways include Kouichi
Takeda, Marion Kee, Sergei Nirenburg, Ralf Brown, and especially Jaime
Carbonell, the director of the center.

Funding for this project is provided by several private institutions and
governmental agencies in the United States and Japan.
------------------------------------------------------------------------------
")
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(print "Type (ACKNOWLEDGE) for acknowledgements.")
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Appendix B

Data Sets Used for Performance
Evaluations

This appendix contains two of the data sets used in various evaluations presented throughout this
thesis. The two sets included here are: (1) the benchmark for runtime performance evaluation
data set (see Chapter 3), and (2) the ATIS test set, used in evaluations in Chapters 4, 5 and 6.
Two additional test data sets - the JANUS English evaluation test set, and the JANUS/Enthusiast
Spanish evaluation test set, are not included here due to their large volume. All four data sets can
be obtained electronically on the Internet via anonymous FTP. Instructions on how to do so follow.

B.1. Instructions for Retrieving Data via FTP
The four data sets used for evaluations in this thesis can be obtained electronically on the Internet
via anonymous FTP. To do so, follow these instructions:

1. ftp to the host “ftp.cs.cmu.edu”.

2. login as user-id “anonymous” using your email address as the password.

3. move to the data directory by executing the command: “cd user/alavie/data”.

4. execute the command: “get | data-set-name F ”, where | data-set-name F is the name of
the desired data set file.

5. execute the command: “quit”, to exit the ftp program

The names of the retrievable data set files are the following:
� “benchmark.txt”: the benchmark for runtime performance evaluation data set (which is

included in this appendix).

� “atis-test.txt”: the ATIS test set (included in this appendix).

� “english-test-trans.txt”: the transcribed version of the JANUS English evaluation test set.

� “english-test-sp.txt”: the speech recognized version of the JANUS English evaluation test
set.

� “spanish-test-ptt.txt”: the transcribed version of the JANUS/Enthusiast Spanish push-to-
talk evaluation test set.
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� “spanish-test-xt.txt”: the transcribed version of the JANUS/Enthusiast Spanish cross-talk
evaluation test set.

B.2. Benchmark for Runtime Performance Evaluation
The following set of utterances is the benchmark data set that was used to evaluate the actual time
and space performance of GLR* parser in Chapter 3 of the thesis. This data set is a subset of
the ESST development set data. The development set data consists of transcribed text of actual
recorded dialogs, where the parties attempted to schedule a meeting. The transcribed utterances
are broken into sentences. The benchmark set contains 552 of these sentences.

(monday and tuesday in fact monday tuesday wednesday and thursday of
that week nine to twelve i+m out $)
(i have something ten to noon $)
(because i+m booked from nine and four thirty $)
(i think that the conclusion is that week is out $)
(i have something from ten to five $)
(i+m pretty much booked up on tuesday and wednesday $)
(i+m booked up that day $)
(that+s no good $)
(i+m booked up with a seminar for the twenty sixth twenty seventh and
twenty eighth $)
(my mornings are pretty busy $)
(i+m busy friday through next tuesday $)
(i+m really busy next week $)
(i+m busy until one $)
(as a matter of fact i won+t have any time $)
(let+s see on monday i have something from one to four $)
(friday the eighth of october i seem to only have one hour eleven
thirty to twelve thirty taken up $)
(friday i+m busy in the afternoon $)
(tuesday and wednesday i+m gonna be out of town $)
(i+m out of town let+s see next wednesday through friday so through
that monday $)
(+cause i+ll be out of town myself $)
(i+m out of town from the thirtieth to the third $)
(i+ll be out of town from the ninth through the eleventh $)
(i have class from nine to twelve $)
(i got a meeting from three to four thirty $)
(i+m in a seminar $)
(i have a meeting till twelve $)
(i have a meeting from one to two $)
(thursday the twenty ninth i have a meeting from nine to twelve $)
(i got a meeting from one to four $)
(i have a meeting at ten am $)
(i already have a meeting between two and four on monday the eighth $)
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(i have a meeting from eight am to five pm a seminar $)
(i+ve got a seminar on march the seventeenth $)
(i have class from nine to twelve on the sixteenth $)
(i+ve got a seminar on monday and tuesday $)
(it runs from nine to four thirty $)
(let+s see that means that wednesday+s probably the best for me $)
(tuesday i+m free in the afternoon $)
(and wednesday i+m free all day $)
(but i guess i+m available let+s see late afternoon on friday $)
(and the following tuesday and wednesday i+m pretty free $)
(i+m free in the morning though $)
(but monday i have free $)
(i have friday totally free $)
(between ten and twelve is good $)
(and between one and three is good $)
(that+s good with me $)
(after two looks fine with me $)
(i have friday completely free too $)
(but after twelve o+clock i+m free $)
(that sounds fine with me $)
(next week looks good for me $)
(i+m totally free on tuesday $)
(if you want to meet thursday which is the third $)
(i+m free after ten am $)
(that sounds great $)
(wednesday afternoon sounds good $)
(but after that i+m free $)
(august fourth probably after one would be great for me $)
(between two and four on monday the eighth sounds really good for me $)
(i+ll be available on march the seventeenth $)
(so anytime before nine and anytime after twelve would be fine $)
(that sounds good $)
(i+m free the whole afternoon $)
(i+m free $)
(can you meet in the morning $)
(so how does monday the twenty ninth after three o+clock sound $)
(how does thursday after eleven o+clock sound $)
(how does wednesday february third sound $)
(how+s about monday july twenty six after twelve o+clock sound $)
(do you have a couple hours off during the next couple of weeks $)
(do you have any time after two on the eighth $)
(would you have eleven to one on the twelfth which is friday $)
(would you have anything on tuesday afternoon the sixteenth $)
(do you have an agenda for that day $)
(we have to fit it in there if possible $)
(so what about february the second on tuesday $)
(so let+s jump to tuesday the twenty eighth $)
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(but we can meet from eight to ten $)
(if you don+t mind it that early $)
(then let+s plan it for then $)
(on the eighth eight to ten $)
(how +bout next week $)
(how +bout after two $)
(how +bout thursday the twenty ninth $)
(so what about friday $)
(how about wednesday august fourth after one o+clock $)
(should we say between two and four on monday the eighth $)
(let+s try to work something else out $)
(how +bout that $)
(should we say from one pm on on the sixteenth $)
(let+s make it then $)
(hello $)
(hey $)
(take care $)
(thanks $)
(arthur $)
(jackie $)
(jackie $)
(ava $)
(john $)
(cindy $)
(john $)
(okay $)
(sounds good $)
(okay $)
(okay $)
(sounds good $)
(alright $)
(yeah $)
(no $)
(alright $)
(yeah $)
(alright $)
(no $)
(fine $)
(yeah $)
(okay $)
(right $)
(yeah $)
(alright $)
(sounds great to me $)
(yeah $)
(okay $)
(okay $)
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(yeah $)
(sure $)
(okay $)
(right $)
(yeah $)
(great $)
(okay $)
(okay $)
(okay $)
(yeah $)
(no $)
(okay $)
(no $)
(sounds good $)
(okay $)
(okay $)
(in fact i+ll tell you what $)
(let+s see $)
(geez $)
(well let+s see $)
(well $)
(well $)
(i+m sorry $)
(i+m sorry $)
(i+m sorry $)
(maybe tuesday $)
(so let+s say two o+clock $)
(and then after that anytime $)
(so we+ll say friday the eighth eight to ten $)
(friday october eighth eight to ten $)
(thursday the eighth at noon $)
(within the next two weeks $)
(one o+clock $)
(after two wednesday the third $)
(or sometime the following week $)
(two o+clock wednesday fourth $)
(but probably in the afternoon early this week or only on thursday
next week $)
(noon on june three $)
(either tuesday afternoon or wednesday afternoon $)
(two to four on wednesday august fourth $)
(so where do you stand on that $)
(how +bout your calendar $)
(what do you think $)
(well what day were you looking at in general $)
(what+s good for you $)
(when do you have time $)
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(so why don+t we meet at noon on thursday the eighth then $)
(i need to meet with you again $)
(so you want to meet about i dunno two o+clock on wednesday the
fourth $)
(could you make a meeting sometime in the next two weeks perhaps
monday afternoon $)
(before we go i think we should schedule a meeting sometime in the
next two weeks for at least two hours $)
(let+s make it a brunch meeting at denny+s $)
(i+d like to go over a couple of things with you in the next couple
of weeks $)
(but do you think we could meet at noon $)
(how +bout if we get together for a couple hours in the next couple
weeks $)
(we really should get together sometime $)
(do you wanna get together in two weeks $)
(+s+at set $)
(i+ll see you on june third at noon $)
(i+ll see you then $)
(i+ll see you then $)
(by monday i assume you mean monday the twenty seventh $)
(so that+s february the third at two $)
(i+m not sure if you meant that you were busy through tuesday $)
(we+re talking about august four $)
(today is friday the fifth $)
(that+s a wednesday $)
(well if you have eleven thirty to twelve thirty filled up there $)
(so let me see $)
(two hours should be fine $)
(or are you gonna be back on tuesday $)
(what do you think $)
(sounds great to me $)
(okay $)
(let me see $)
(twenty actually july twenty sixth and twenty seventh looks good $)
(the twenty sixth afternoon or the twenty seventh before three pm $)
(geez $)
(i+m out of town the thirtieth through the third $)
(i+m in san francisco $)
(or even next wednesday after one o+clock $)
(actually the twenty sixth and the twenty seventh i+ll be at a seminar
all day $)
(twenty ninth is out $)
(and you+re out of town the thirtieth through the third $)
(if that+s the case we could meet possibly wednesday afternoon $)
(after one sounds good to me $)
(the rest of the week doesn+t look too good $)
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(how +bout the fourth at two o+clock $)
(maybe from two to four $)
(do you have any ideas just off the top of your head $)
(right now i really don+t have any ideas $)
(then i+ll see you wednesday at two pm $)
(i+ll send you mail regarding the location $)
(thanks $)
(see you then $)
(bye $)
(that sounds good $)
(patty $)
(what do you think about that $)
(thanks $)
(that sounds good $)
(patty $)
(okay $)
(see you then $)
(bye $)
(well marcy $)
(looks like we need to schedule another meeting in the next couple
of weeks $)
(so seems like to me the best time would be in the afternoon $)
(what afternoons are you available in the next couple weeks $)
(okay $)
(i look to be available between two and three on the twenty eighth
after twelve on the twenty ninth after two on the thirtieth and
let+s see between two and three thirty on the first $)
(and that+s really it for me in the afternoons $)
(okay $)
(so you gave me a couple of what seemed to be one and a half hour
times $)
(how +bout two hour times $)
(twenty ninth is not good for me in the afternoon $)
(i do have a seminar all day that day $)
(and the afternoon of the thirtieth is also booked from two thirty
to five $)
(no $)
(i don+t have anything longer than an hour and a half all day on
the first $)
(let+s see is it every day until twelve that you+re busy $)
(because i have a lot of mornings free $)
(actually on the morning of the sixth $)
(well i don+t have anything scheduled at all on the sixth $)
(so we could do something on the morning of the sixth $)
(how would that be for you $)
(because this i+m out of town on the sixth $)
(wait $)
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(i really have to rule out the whole week of the fourth $)
(because i don+t have a two hour block at all that whole week $)
(i really don+t have a two hour block between nine and five that
whole week except for in the mornings $)
(oops $)
(on the first i have a meeting from ten to eleven $)
(but we could meet $)
(well no $)
(how would that be $)
(no $)
(sorry $)
(first is still bad $)
(here are the times i actually have $)
(before one on the twenty seventh before twelve on the twenty eighth
after twelve on the twenty ninth and after two on the thirtieth $)
(those are the only two hour slots i have $)
(if we don+t find something in that time $)
(maybe we can go to the weekend or something $)
(okay $)
(looks like we+re gonna have to go to the weekend $)
(on saturday i already have an appointment from eleven to one pm on
the second $)
(but other than that i+m free $)
(how+s your saturday $)
(that actually sounds good $)
(how +bout one o+clock on the second $)
(okay $)
(one to three $)
(it sounds good $)
(alright $)
(great $)
(see you then $)
(okay $)
(marcy $)
(looks like we need to schedule another two hour meeting here $)
(let+s see $)
(next week the week of the twenty second i have two hour blocks
available from three to five on the twenty third from twelve to two
on the twenty fifth and either before twelve or after one thirty on
the twenty sixth $)
(are any of those times good for you $)
(sorry $)
(no $)
(i have something the afternoon of the twenty third $)
(and i+m out of town the twenty fifth through the twenty seventh $)
(how +bout the week of the twenty ninth $)
(wait $)
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(i can tell you right off the bat that friday the third is not good $)
(thursday the second is not good $)
(but any morning twenty ninth thirtieth or first are all good $)
(well unfortunately my mornings the twenty ninth thirtieth and first
are all full $)
(on those three days $)
(let+s see $)
(i would have time on the twenty ninth between twelve and three on
the thirtieth after twelve $)
(and i don+t have a two hour block free on the first $)
(so either the twenty ninth or thirtieth $)
(how are those for you $)
(no $)
(sorry $)
(none of those are going to work it looks like $)
(it looks like we might have to go to the weekend again $)
(gee $)
(how does before twelve or after two on saturday the fourth look $)
(well saturday the fourth is free all day for me $)
(say ten to twelve on saturday the fourth $)
(yes $)
(ten to twelve on saturday the fourth looks good $)
(thanks $)
(mr. sullivan $)
(yes $)
(so in the next two weeks when can you meet $)
(well let me check my calendar here $)
(we+re on the twenty fourth $)
(well the twenty seventh i have class from nine twelve $)
(so the afternoon is free $)
(and on the twenty eighth also the twenty ninth is totally full $)
(how do those days look for you $)
(well looks like twenty seventh morning would be great for me $)
(twenty eighth morning would also be fine $)
(twenty ninth is pretty busy $)
(afternoon might work $)
(or very early morning $)
(because twenty seventh and twenty eighth mornings are horrible
for me $)
(and afternoons are fine $)
(and let+s see on the thirtieth $)
(the thirtieth+s pretty horrible too $)
(how +bout the first full week of october $)
(well i+m really sort of sorry $)
(but it looks like i+ll be busy the entire first week of october $)
(how about the friday the first $)
(well i have a meeting from ten am until eleven pm $)
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(other than that i+m free $)
(so when are you free $)
(when did you say you were free on thursday $)
(well on thursday i am free from twelve o+clock until two thirty $)
(unless you want to meet after five o+clock that is $)
(nope $)
(after five will certainly not work for me $)
(how +bout saturday the second $)
(well it is a saturday $)
(but after one pm would be fine $)
(how +bout one thirty $)
(would that work for you $)
(one thirty sounds great $)
(okay $)
(then i will see you at one thirty on saturday +till about three
thirty $)
(wonderful $)
(i+ll look forward to it also $)
(you have a good day $)
(mr. sullivan $)
(when in the next two weeks would be good for you $)
(well it looks like next monday and tuesday in the morning would be
fine $)
(or even wednesday in the morning $)
(after that i+ll be out of town for a bit though $)
(goodness $)
(because i have class monday in the morning from nine until twelve $)
(and tuesday in the morning i+ve got a meeting from ten to twelve $)
(so well $)
(but if you+d be able to meet at eight $)
(i could do it or $)
(wednesday i have class again from nine to twelve $)
(so let+s see if we could work something out here $)
(well i+m very sorry $)
(but eight o+clock just won+t work $)
(would you be free at one o+clock on monday or for that matter at
one o+clock on wednesday $)
(unfortunately no i+m not $)
(well i have a meeting at one thirty on tuesday $)
(and i have class at one thirty on wednesday $)
(i am free at three o+clock on tuesday $)
(and i+m free at three thirty on wednesday $)
(perhaps we could get together then or somewhere around then $)
(nope $)
(how +bout the next week $)
(well let+s see monday morning again i have class from nine until
twelve $)
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(and on the thirtieth i have a meeting with the other professors
from ten until twelve $)
(so again i don+t like eight o+clock either $)
(but on the thirtieth which is tuesday i could meet either you from
eight until ten $)
(or anytime after twelve o+clock noon would be fine $)
(would either of those work for you $)
(nope unfortunately they wouldn+t $)
(see there+s always wednesday morning $)
(if wednesday morning doesn+t work out then $)
(let me see well wednesday morning again is no good $)
(i do teach class from nine until twelve and from one thirty until
three thirty $)
(would you have time in the evening $)
(perhaps from five o+clock or six o+clock on on wednesday evening $)
(no $)
(i+m very sorry $)
(but my evenings are generally taken up $)
(how +bout saturday the fourth $)
(well if nothing else will work out $)
(then i think i could put it in on saturday at two thirty $)
(would you like to have lunch $)
(a late lunch would be wonderful $)
(okay $)
(see you at two thirty on saturday $)
(great $)
(i+ll see you then $)
(have a good day $)
(hello $)
(dan $)
(it+s me again $)
(and i+m looking at my schedule $)
(okay $)
(the first of april i+m pretty much busy all day except in the
morning before ten $)
(but that would be uncool $)
(the fifth i+m busy all day also $)
(and the eighth i+m free after ten o+clock $)
(so it looks like the eighth is when we can meet $)
(the eighth sounds good $)
(how +bout well i have lunch at eleven thirty $)
(and then we+ll meet from twelve thirty to two thirty $)
(what do you think $)
(okay $)
(that sounds good to me $)
(i+ll meet you at eleven thirty $)
(and then we+ll do our meeting from twelve thirty to two thirty $)
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(bye $)
(okay $)
(danny $)
(we need to schedule another one $)
(seems to me like we should meet on the third wednesday $)
(after two o+clock so $)
(and and we+ll be done by five $)
(because everything else is booked $)
(and i+m out of town $)
(i+m really busy this month $)
(okay $)
(the third sounds good $)
(and we can get done just in time $)
(how +bout you $)
(is that good $)
(yeah $)
(it+s excellent $)
(let+s do it $)
(the third sounds good to me $)
(my god $)
(are we going to meet during thanksgiving $)
(well i+m gonna be out of town from the twenty fifth through
saturday $)
(which leaves me monday morning and tuesday morning $)
(and yeah $)
(monday tuesday wednesday the mornings are all good for me $)
(let+s see monday the twenty ninth the morning+s good for me $)
(god $)
(no $)
(that+s not gonna work for me $)
(let+s see $)
(or actually monday through friday none of my mornings are good at
all $)
(how are your afternoons $)
(just barely three to five on monday november twenty ninth $)
(how does the first the week of the twenty second look to you $)
(so i don+t know how your noon to three is on monday the twenty
second $)
(actually i was referring to the week of the twenty second $)
(well wednesday anything before three is good for me $)
(so wednesday between noon and three $)
(can you fit something in $)
(not really $)
(okay $)
(shall we try for evenings $)
(tuesday my meeting starts at two $)
(so we could go noon to two perhaps on tuesday the twenty third of
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november $)
(so are your mornings also busy in the first week of december $)
(yes $)
(they are nine to twelve every day $)
(name your time $)
(two thirty to four thirty $)
(you got it $)
(okay $)
(good $)
(thank you $)
(thank you $)
(but i think we should get together again sometime in the next couple
of weeks $)
(okay $)
(let+s see $)
(today+s the twenty fourth $)
(probably next monday would be bad $)
(but but maybe wednesday the twenty ninth $)
(wednesday+s really bad for me $)
(i+ve got a seminar that goes all day $)
(let+s see $)
(would that work for you $)
(no $)
(i+ll be busy most of the afternoon on thursday $)
(maybe not $)
(maybe next friday $)
(anytime after that would be okay with me $)
(okay $)
(do you think we could do it friday between eleven and twelve thirty $)
(what about the following week $)
(do you have some time then $)
(well let+s see i+ll be out of town from monday through wednesday
that+s the fourth through the sixth $)
(and then thursday and friday the seventh and eighth i+ll be busy
all day too $)
(but i+ll be free that weekend the weekend before that the second
and third $)
(okay $)
(well $)
(i hate to work on the weekend $)
(but i can do it $)
(i+m gonna be playing tennis on the second $)
(and that+ll go until about one in the afternoon $)
(so i could meet you possibly starting around two on saturday $)
(or anytime on sunday after about i dunno three in the afternoon
would be alright $)
(okay $)
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(either saturday or sunday is fine for me $)
(let+s do it on saturday $)
(i+m free after one $)
(so maybe we can get together at two fifteen or two thirty or so $)
(yeah $)
(two thirty sounds best to me $)
(so saturday the second at two thirty then $)
(okay $)
(we+ll see you then $)
(okay $)
(and we+re gonna have to schedule a meeting sometime in the next
two weeks $)
(so when are you free next week possibly $)
(next week is pretty good for me $)
(i think next week wednesday afternoon would be the best $)
(or thursday after two o+clock $)
(let me see $)
(i+m looking at my schedule $)
(thursday after two is anywhere from two thirty to five on thursday
fine $)
(yes $)
(i have a meeting from ten to twelve $)
(and then another meeting from one to two $)
(are you free after two o+clock on thursday $)
(okay $)
(well $)
(and i have a meeting from two thirty to five $)
(so thursday+s definitely out of the question $)
(as for wednesday it looks like i+m pretty much booked for the whole
entire day from nine am to four thirty pm $)
(how+s the week after look $)
(are you free on perhaps wednesday $)
(no $)
(unfortunately i+m out of town from monday through wednesday $)
(so any of those days won+t work $)
(and the following week thursday and friday i have a seminar from ten
to five $)
(any times are good next week $)
(let+s see on monday and tuesday i have a class from nine to twelve $)
(but i seem to be free anytime from there on afternoon $)
(i+m free in the morning $)
(but not in the afternoon $)
(are you free saturday october second $)
(let+s see $)
(on saturday i just have tennis from eleven to one pm $)
(but i guess we should check out friday possibly $)
(i just have a meeting from ten to eleven am $)
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(and possibly you free anytime then $)
(no $)
(friday i+m booked all day with meetings and classes $)
(would you mind working on saturday $)
(saturday sounds fine i suppose $)
(i guess right after i get back from tennis $)
(i+m done by one pm $)
(so i guess we could schedule it anytime after then $)
(sounds fine to me $)
(okay $)
(great $)
(let+s meet from two to four $)
(okay $)
(alright $)
(i guess i+ll just see you then $)
(good bye $)
(have a good day $)

B.3. ATIS Test Set

The following set of utterances is the test data set for the ATIS domain that was used for evaluations
in Chapters 4, 5 and 6 of the thesis. It consists of 119 utterances.

(all flights from atlanta to san francisco $)
(four how long does the first one stop $)
(when does the first one stop $)
(when does this flight leave from denver $)
(when does this flight arrive in denver $)
(i need to fly from philadelphia to san francisco on united $)
(i need the flights from philadelphia to san francisco on american $)
(does this flight stop in dallas $)
(can i fly first class on this flight $)
(when does it arrive in dallas $)
(when does it leaves dallas $)
(when are the first class flights available from philadelphia to
san francisco $)
(when does the american flight stop $)
(what does d f w $)
(i would like to fly from boston to san francisco $)
(i would like a flight from dallas to philadelphia $)
(i would like to fly from denver to boston $)
(i would like to fly from denver to pittsburgh $)
(i would like to go before twelve noon $)
(i would like to and depart before eleven a m $)
(i would like to depart after three p m $)
(i would like the cheapest flight $)
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(would like breakfast flight $)
(after two p m $)
(one way $)
(what type of aircraft is used for flight twelve oakland $)
(which flight is the cheapest $)
(i would like the first flight two mentioned $)
(i would like a ticket on delta flight one zero zero six $)
(book flight fourteen twenty two one $)
(i would like to fly from pittsburgh to atlanta $)
(after three p m $)
(would like a flight on august twenty fifth $)
(please book flight three eighty one $)
(i+d like to fly from atlanta to denver on august twenty nine $)
(i would like to go before eleven a m $)
(what about the flight $)
(book flight eight twenty one $)
(i+d like cheapest philadelphia to boston december twenty fifth $)
(philadelphia to boston please expensive fare $)
(which of these tell me what the least expensive areas from
philadelphia to boston on december twenty fifth $)
(from philadelphia to boston departing december twenty fifth ways
the cheapest fare $)
(i+d like to go from philadelphia to boston one way december
twenty fifth what days cheapest fare $)
(i+d like to go from philadelphia to boston $)
(what meal is the least expensive flight $)
(one way please $)
(i+d like to go from boston to philadelphia $)
(i+d like only snack only the snack $)
(which flights have only the snack $)
(which flight have snack $)
(which flights do not serve breakfast but do serve snack $)
(i would like to go from philadelphia to boston $)
(i+d like to leave in the afternoon $)
(i+d like flights that arrive before five p m $)
(which of these flights are nonstop $)
(which flights arrive between four thirty and five thirty $)
(which flights arrive between the flights that flight ten $)
(i+d like to go from philadelphia to san francisco $)
(which flights from philadelphia to san francisco stop in dallas $)
(does this flight one american $)
(does this flight have first class seats $)
(i+d like to fly first class $)
(what kind of aircraft is it $)
(find the cheapest flight from boston to philadelphia please $)
(how much is the first class ticket on flight eight one three $)
(show flights from the denver at two washington at leaving at
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eight four seven a m $)
(okay list flights leaving before nine a m $)
(list flights leaving before nine p m $)
(show flights from philadelphia to baltimore leaving after five p m $)
(what kind of aircraft is the eight forty five flight $)
(show flights from philadelphia to san francisco stopping in dallas $)
(how long is a stopover $)
(how long is a stopover on flight four fifty nine $)
(when does this flight arrive in dallas $)
(what does the first class ticket on that flight cost $)
(what is the fare for that flight leaving eighteen and ten days $)
(what does the seating capacity of airplane $)
(how many passengers does that flight hold $)
(what kind of plane is this flight $)
(i+d like the flight from oakland to boston $)
(where is the stop for flight number three fifty four $)
(how much does that flight cost $)
(what are all the flights from oakland to boston $)
(can you show me the prices of all these flights $)
(what the prices of all the flights from oakland to boston $)
(show me the flights from san francisco two atlanta $)
(are there any other flights from san francisco to atlanta $)
(what flight said there from philadelphia to denver $)
(does flight sixteen thirty one serve a meal $)
(what are all flights from denver to pittsburgh four atlanta $)
(what are the flights from atlanta to pittsburgh $)
(can i have a round trip flight from denver to pittsburgh with a stop
in atlanta $)
(what are the prices for all flights from denver to pittsburgh and
from pittsburgh to atlanta and from atlanta to denver $)
(what other prices from the flights from denver two pittsburgh $)
(what the prices from the flights from pittsburgh to atlanta $)
(i+m looking for a flight from boston to atlanta leaving sometime
towards the end of january it should be one way $)
(i+d like to go from boston to atlanta in january one way $)
(are these daily flights $)
(what+s the fare for flight nine seventy five $)
(what kind of plane is flight nine seventy five from boston to
atlanta $)
(i+d like to flight from chicago to san francisco sometime after six
what kind of plane would that be $)
(i+d like to fly from atlanta to san francisco sometime after six
what kind of plane would that day $)
(i+m going from atlanta to san francisco $)
(i+d like to leave after six $)
(what airplanes are those $)
(can you show me the list the flights again $)

183



(i+d like to spend wednesday and new orleans $)
(i+d really like to spend wednesday in oakland $)
(by one i go to oakland on wednesday $)
(do show me the flights back as well $)
(show me flights back $)
(i+d like to come back as late as possible $)
(what+s the latest flight i can return on $)
(what was the last flight you showed me $)
(list the earliest flight leaving leaving boston going to oakland
on wednesday $)
(what is the latest flight coming back $)
(what+s the latest flight going back $)
(what+s the last return flight $)
(what is the latest return flight $)
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[63] L. Mayfield, M. Gavaldà, W. Ward, and A. Waibel. Concept-based Speech Translation. In
Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP’95), Detroit, MI, 1995.

[64] M. C. McCord. Heuristics for Broad-Coverage Natural Language Parsing. In Proceedings of
the ARPA Workshop on Human Language Technology, Princeton, NJ, March 1993. Morgan
Kaufmann.

[65] D. D. McDonald. Robust Partial Parsing through Incremental Multi-level Processing:
Rationales and Biases. In P. S. Jacobs, editor, Text-based Intelligent Systems: Current
Research in Text Analysis, Information Extraction and Retrieval, pages 61–65, September
1990. Selected Papers from AAAI Spring Symposium on Text-based Intelligent System,
March 1990, Stanford University, Stanford, CA. Published as Technical Report 90CRD198,
GE Research and Development Center, Schenectady, NY.

189



[66] D. D. McDonald. An Efficient Chart-based Algorithm for Partial Parsing of Unrestricted
Texts. In Proceedings of the Third Conference on Applied Natural Language Processing
(ANLP’92), pages 193–200, Trento, Italy, April 1992.

[67] S. W. McRoy. The Influence of Time and Memory Constraints on the Resolution of Structural
Ambiguity. Technical Report CSRI-209, Computer Systems Research Institute, University
of Toronto, September 1988.

[68] C. S. Mellish. Some Chart Based Techniques for Parsing Ill-formed Input. In Proceedings of
the 27th Annual Meeting of the Association of Computational Linguistics (ACL’89), pages
102–109, 1989.

[69] W. Menzel. Robust Processing of Natural Language. In Proceedings of 19th German
Conference on Artificial Intelligence (KI’95), Bielefeld, Germany, 1995. (To appear.
Advance copy obtained via the Computational Linguistics Electronic Archive).

[70] R. M. Moore, F. Pereira, and H. Murveit. Integrating Speech and Natural Language
Processing. In Proceedings of the Speech and Natural Language Workshop, pages 243–
247, Philadelphia, Pennsylvania, 1989.

[71] H. Murveit and R. Moore. Integrating Natural Language Constraints into HMM-based
Speech Recognition. In Proceedings of IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP’90), pages 573–576, 1990.

[72] S. Nakagawa. Speaker Independent Continuous Speech Recognition by Phoneme-based
Word Spotting and Time Synchronous Context-free Parsing. Computer Speech and
Language, 3(3):277–299, July 1989.

[73] T. Nasukawa. Robust Parsing Based on Discourse Information: Completing the Partial
Parses of Ill-formed Sentences on the Basis of Discourse Information. In Proceedings of
the 33th Annual Meeting of the Association of Computational Linguistics (ACL’95), Boston,
MA, June 1995.

[74] H. Ney. Dynamic Programming Speech Recognition Using a Context-free Grammar. In
Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP’87), pages 69–72, 1987.

[75] S. Ng and M. Tomita. Probabilistic LR Parsing for General Context-Free Grammars. In
Proceedings of Second International Workshop on Parsing Technologies (IWPT’91), pages
154–163, Cancun, Mexico, 1991.

[76] R. Nozohoor-Farshi. GLR Parsing for � -Grammars. In M. Tomita, editor, Generalized LR
Parsing, pages 61–76. Kluwer Academic Publishers, 1991.

[77] M. Okada. A Unification Grammar Directed One Pass Search Algorithm for Parsing Spoken
Language. In Proceedings of IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP’91), pages 721–724, April 1991.

190



[78] Giachin E. P. and C. Rullent. Robust Parsing of Severely Corrupted Spoken Utterances. In
Proceedings of 12th International Conference on Computational Linguistics (COLING’88),
pages 196–201, Budapest, Hungary, 1988.

[79] C. Pollard and I. Sag. Information Based Syntax and Semantics: Vol. 1 - Fundamentals.
University of Chicago Press, Chicago, IL, 1987.

[80] L. R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition. In Readings in Speech Recognition (Edited by: A. Waibel and K-F. Lee), pages
267–296. Morgan Kaufmann, 1990.

[81] C. P. Rosé, B. Di Eugenio, L. S. Levin, and C. Van Ess-Dykema. Discourse Processing
of Dialogues with Multiple Threads. In Proceedings of the 33th Annual Meeting of the
Association of Computational Linguistics (ACL’95), Boston, MA, 1995.

[82] H. Saito. Bi-directional LR Parsing from an Anchor Word for Speech Recognition. In
Proceedings of 13th International Conference on Computational Linguistics (COLING’90),
Helsinki, Finland, 1990.

[83] H. Saito and M. Tomita. Parsing Noisy Sentences. In Proceedings of 12th International
Conference on Computational Linguistics (COLING’88), Budapest, Hungary, 1988.

[84] Y. Schabes and R. C. Waters. Stochastic Lexicalized Context-Free Grammar. In Proceedings
of the 3rd International Workshop on Parsing Technologies (IWPT’93), pages 257–266,
Tilburg, The Netherlands, 1993.

[85] S. Seneff. A Relaxation Method for Understanding Spontaneous Speech Utterances. In
Proceedings of DARPA Speech and Natural Language Workshop, pages 299–304, February
1992.

[86] S. Seneff. TINA: A Natural Language System for Spoken Language Applications.
Computational Linguistics, 18(1):61–86, 1992.

[87] P. Shann. Experiments with GLR and Chart Parsing. In M. Tomita, editor, Generalized LR
Parsing, pages 17–34. Kluwer Academic Publishers, 1991.

[88] S. Staab. GLR Parsing of Word Lattices Using a Beam Search Method. To be presented at
Eurospeech’95, Madrid, Spain. Advance copy obtained via the Computational Linguistics
Electronic Archive, 1995.

[89] D. Stallard and R. Bobrow. Fragment Processing in the DELPHI System. In Proceedings of
DARPA Speech and Natural Language Workshop, pages 305–310, February 1992.

[90] T. Strzalkowski. TTP: A Fast and Robust Parser for Natural Language. In Proceedings
of International Conference on Computational Linguistics (COLING’92), pages 198–204,
Nantes, France, August 1992.

[91] B. Suhm, P. Geutner, T. Kemp, A. Lavie, L. Mayfield, A. E. McNair, I. Rogina, T. Sloboda,
W. Ward, M. Woszczyna, and A. Waibel. JANUS: Towards Multi-lingual Spoken Language
Translation. In ARPA Workshop on Spoken Language Technology, 1995.

191



[92] B. Suhm, L. S. Levin, N. Coccaro, J. G. Carbonell, K. Horiguchi, R. Isotani, A. Lavie,
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